Cetrimonium Nalidixate as a Multifunctional Inhibitor to Combat Biofilm Formation and Microbiologically Influenced Corrosion
Marianne Seter A , Melanie J. Thomson B , Alison Chong C , Douglas R. MacFarlane C and Maria Forsyth A DA Institute for Frontier Materials, Deakin University, Burwood, Vic. 3125, Australia.
B School of Medicine, Deakin University, Geelong, Vic. 3220, Australia.
C School of Chemistry, Monash University, Clayton, Vic. 3168, Australia.
D Corresponding author. Email: maria.forsyth@deakin.edu.au
Australian Journal of Chemistry 66(8) 921-929 https://doi.org/10.1071/CH13107
Submitted: 5 March 2013 Accepted: 2 May 2013 Published: 29 May 2013
Abstract
Microbial infection of surfaces and the formation of biofilms is a pervasive problem that appears in diverse fields from medical implants to corrosion of marine structures. We show here, for the first time, the multifunctional inhibitory effects of an environmentally friendly organic salt, cetrimonium nalidixate, a dual active compound based on concepts emerging from the active ionic liquids field. This salt when incorporated into a polyurethane coating leads to complete inhibition of microbiologically influenced corrosion in the presence of several bacteria strains commonly found in marine environments.
References
[1] T. E. Cloete, L. Jacobs, V. S. Brözel, Biodegradation 1998, 9, 23.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFSktL4%3D&md5=e1c86fff1a54141aad56b68821253fbcCAS | 9807802PubMed |
[2] M. Lavania, P. M. Sarma, A. K. Mandal, S. Cheema, B. Lai, J. Environ. Sci. 2011, 23, 1394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wmtr3F&md5=dd2fb0d308b5672b653731d8032f09bfCAS |
[3] J. Nawrocki, U. Raczyk-Stanislawiak, J. Swietlik, A. Olejnik, M. Sroka, Water Res. 2010, 44, 1863.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFShtLo%3D&md5=3e052ed8259a5777df5ac4014c3fc7daCAS | 20053415PubMed |
[4] S. S. Al-Jaroudi, A. Ul-Hamid, M. M. Al-Gahtani, Corros. Eng. Sci. Techn. 2011, 46, 568.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1amsrc%3D&md5=5a9171aa85725ddb982d03194578557dCAS |
[5] J. P. Pavissich, I. T. Vargas, B. González, P. A. Pastén, G. E. Pizarro, J. Appl. Microbiol. 2010, 109, 771.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyitr3I&md5=978e97c03125f710a4ef8c875742e8c0CAS | 20337760PubMed |
[6] P. Y. Qian, S. Lau, H. U. Dahms, S. Dobretsov, T. Harder, Mar. Biotechnol. 2007, 9, 399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVynurzJ&md5=978cbff73c46bae060a649e9ea62a2f2CAS | 17497196PubMed |
[7] Microbially Influenced Corrosion of Materials: Scientific and Engineering Aspects (Eds E. Heitz, H.-C. Flemming, W. Sand) 1996 (Springer-Verlag: Berlin).
[8] R. Javaherdashti, Anti-Corros. Method. M. 1999, 46, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVSjt7o%3D&md5=2028fca5ada915f60155c79ec7c9c91aCAS |
[9] J. D. Bryers, Biotechnol. Prog. 1987, 3, 57.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvFGit7Y%3D&md5=0e94df9c3c7da3f998de7d68b0c826d5CAS |
[10] F. Mansfeld, Electrochim. Acta 2007, 52, 7670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFyqu7c%3D&md5=e55c11051efa285402a76112956dd053CAS |
[11] R. Zuo, Appl. Microbiol. Biotechnol. 2007, 76, 1245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGmt7%2FL&md5=8b202faceec27030201a862afd5fa859CAS | 17701408PubMed |
[12] X. Sheng, Y.-P. Ting, S. O. Pehkonen, Corros. Sci. 2007, 49, 2159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislWrur4%3D&md5=a15ae78fed8fbc81cda44999fc854d71CAS |
[13] A. Katranitsas, J. Castritsi-Catharios, G. Persoone, Mar. Pollut. Bull. 2003, 46, 1491.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1ajs70%3D&md5=8fccc3d1d484451dbed13b76795c71f3CAS | 14607547PubMed |
[14] P.-L. Kuo, T.-F. Chuang, H.-L. Wang, J. Coating. Technol. 1999, 71, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFWrs7s%3D&md5=773e6e9da944150734dd9967fcc971f3CAS |
[15] R. F. Brady, Prog. Org. Coat. 2001, 43, 188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFCisbg%3D&md5=cf2ef078bc29497d5f11441db9627c22CAS |
[16] Y. Zhang, M. Forsyth, B. Hinton, G. Wallace, paper presented at the 18th International Corrosion Congress: Corrosion Control, Contributing to a Sustainable Future for All, Perth, 2011.
[17] K. D. Weaver, H. J. Kim, J. Sun, D. R. MacFarlane, G. D. Elliott, Green Chem. 2010, 12, 507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVSqsLk%3D&md5=5f4924ec62989685fa4d004d1657f618CAS |
[18] (a) J. Stoimenovski, D. R. MacFarlane, K. Bica, R. D. Rogers, Pharm. Res. 2010, 27, 521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Olsb0%3D&md5=01729fe3913b80ff750fdcf82868608aCAS | 20143257PubMed |
(b) J. Stoimenovski, D. R. MacFarlane, Chem. Commun. 2011, 4, 1149.
[19] B. F. Gilmore, M. J. Earle, Chemistry Today 2011, 29, 50.
| 1:CAS:528:DC%2BC3MXnsFKmt7g%3D&md5=670beeecd082488093ca51da0243ef7fCAS |
[20] M. Seter, M. J. Thomson, J. Stoimenovski, D. R. MacFarlane, M. Forsyth, Chem. Commun. 2012, 48, 5983.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1KhtLc%3D&md5=ba70f63fa53fcbac9b71595b0b30dc89CAS |
[21] S. Pang, L. Willis, Int. J. Toxicol. 1997, 16, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslahtLs%3D&md5=87bb833ae04e36ba50d0225eaa99ca13CAS |
[22] R.E. Morrissey, Toxicological and Carcinogenesis of Nalidixic Acid in F344/N Rats and B6C3F1 Mice, National Toxicology Program, Technical Report Series, No. 368 1989.
[23] L. C. Becker, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. Liebler, J. G. Marks, R. C. Shank, T. J. Slaga, P. W. Snyder, F. A. Andersen, Int. J. Toxicol. 2012, 31, 296S.
| Crossref | GoogleScholarGoogle Scholar | 23283705PubMed |
[24] J. T. Wang, S. C. Chang, Y. C. Chen, K. T. Luh, J. Microbiol. Immunol. Infect. 2000, 33, 258.
| 1:CAS:528:DC%2BD3MXkvVOqtQ%3D%3D&md5=4e4832a0d2ed4f06806a210778128b93CAS | 11269372PubMed |
[25] J. G. Whalen, T. W. Mully, J. C. English, Arch. Dermatol. 2007, 143, 124.
| 17224563PubMed |
[26] B. J. Barnes, N. P. Wiederhold, S. T. Micek, L. B. Polish, D. J. Ritchie, Pharmacotherapy 2003, 23, 537.
| Crossref | GoogleScholarGoogle Scholar | 12680484PubMed |
[27] A. Iyer, K. Mody, B. Jha, Indian J. Exp. Biol. 2005, 43, 467.
| 1:CAS:528:DC%2BD2MXmtVOntbg%3D&md5=5d388aebbdabf39a99c77564156ec19fCAS | 15900914PubMed |
[28] C. C. Gaylarde, H. A. Videla, Int. Biodeterior. 1987, 23, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtVejtLs%3D&md5=b0c47bd17994419ea8cf684dd74dbfa5CAS |
[29] P. S. Langendijk, E. M. Kulik, H. Sandmeier, J. Meyer, J. S. van der Hoeven, Int. J. Syst. Evol. Microbiol. 2001, 51, 1035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1KhsrY%3D&md5=fb07de016023b75b3f703f8f6aea1a51CAS | 11411671PubMed |
[30] I. B. Beech, C. C. Gaylarde, J. J. Smith, G. G. Geesey, Appl. Microbiol. Biotechnol. 1991, 35, 65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXit1Ggt7c%3D&md5=4d3644793799c60b5510335b3e57029cCAS |
[31] D. Bermont-Bouis, M. Janvier, P. A. Grimont, I. Dupont, T. Vallaeys, J. Appl. Microbiol. 2007, 102, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlOmtr0%3D&md5=f9cbd8a4591f8c674f4987e57a85bcd1CAS | 17184331PubMed |
[32] N. Boudaud, M. Coton, E. Coton, S. Pineau, J. Travert, C. Amiel, J. Appl. Microbiol. 2010, 109, 166.
| 1:CAS:528:DC%2BC3cXpslOrsr4%3D&md5=bddb5739f6656a654677b06a2d8c88e4CAS | 20059620PubMed |
[33] F. Mansfeld, B. Little, Corros. Sci. 1991, 32, 247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlKntbw%3D&md5=c92560d76fe02a9f92d04b9697106e3fCAS |
[34] F. Blin, S. G. Leary, G. B. Deacon, P. C. Junk, M. Forsyth, Corros. Sci. 2006, 48, 404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1yr&md5=2df2c29ceffdc2af786b43de80207d6cCAS |
[35] J. Hazziza-Laskar, G. Helary, G. Sauvet, J. Appl. Polym. Sci. 1995, 58, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotF2ntr8%3D&md5=fba39d8a07a5c124187b0dc62f699413CAS |
[36] T. Tashiro, Macromol. Mater. Eng. 2001, 286, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVKqs7k%3D&md5=2e8839ee60bc54bf2a8ce05fdcc72ae9CAS |
[37] N. Nurdin, G. Helary, G. Sauvet, J. Appl. Polym. Sci. 1993, 50, 663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1OjsA%3D%3D&md5=62e26831119f2a439b0b983426550cf4CAS |
[38] G. Sauvet, W. Fortuniak, K. Kazmierski, J. Chojnowski, J. Polym. Sci. A Polym. Chem. 2003, 41, 2939.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlaisb0%3D&md5=78d3766783a1336f0ec710c6d0aa7327CAS |
[39] F. Blin, P. Koutsoukos, P. Klepetsianis, M. Forsyth, Electrochim. Acta 2007, 52, 6212.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslWmtrw%3D&md5=1b34b747f339b841f3f77970a3d8348bCAS |
[40] F. Blin, S. G. Leary, K. Wilson, G. B. Deacon, P. C. Junk, M. Forsyth, J. Appl. Electrochem. 2004, 34, 591.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisV2jsro%3D&md5=b556565705a4bc0c48e29ff2d5bca3f5CAS |
[41] G. B. Deacon, M. Forsyth, P. Junk, W. W. Lee, Chem. Aust. 2008, 75, 18.
| 1:CAS:528:DC%2BD1cXhsFWitLbO&md5=573c21b372d0e1118831eeca39ecf1e3CAS |
[42] R. Catubig, M. Seter, W. Neil, M. Forsyth, B. Hinton, J. Electrochem. Soc. 2011, 158, C353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ymurbI&md5=a01b34892687211a36e8efb99883f0acCAS |
[43] M. Seter, B. Hinton, M. Forsyth, J. Electrochem. Soc. 2012, 159, C181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktlCrurk%3D&md5=de113d7bdb7dbc2a0e50b86cc4cfbc7fCAS |