Synthesis of a Thermostable Polymer-supported Strongly Basic Catalyst and its Catalytic Activity
Huining Zan A , Zhiai Hou A , Rongfu Shi A and Chunhong Wang A BA Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China.
B Corresponding author. Email: wch2004@nankai.edu.cn
Australian Journal of Chemistry 66(8) 913-920 https://doi.org/10.1071/CH13027
Submitted: 17 January 2013 Accepted: 26 April 2013 Published: 17 June 2013
Abstract
A novel strongly basic polymer-supported catalyst with guanidine groups has been synthesized and its thermal stability has been investigated. To obtain a thermally stable, cross-linked structure, guanidine groups bound to a polystyrene matrix were allowed to react in a nucleophilic manner with p-xylylene dichloride. Compared with the conventional strongly basic anion-exchange resin 201, it possesses higher thermal stability when placed in deionized water at 95°C for 60 h. This was confirmed by thermogravimetric analysis. The excellent thermal stability can be attributed to the unique structure of guanidine and the cross-linking connection mode between this base and the polymeric matrix. The obtained resin was found to efficiently catalyze Knoevenagel condensation reactions with remarkably high yields. Furthermore, the catalytic efficiency of the resin was found to remain unaffected for seven cycles, whereas that of 201 resin was reduced by 25 % owing to degradation of the strongly basic groups.
References
[1] R. W. Hein, M. J. Astle, J. R. Shelton, J. Org. Chem. 1961, 26, 4874.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XntlSjtw%3D%3D&md5=77b4072980c4d16dd19791a56d5aff55CAS |
[2] A. Akelah, D. C. Sherrington, Chem. Rev. 1981, 81, 557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVaksr4%3D&md5=98c7b76b5320875b95be946f0a9e6c69CAS |
[3] A. Bouillaud, M. Dargelos, M. E. Borredon, Aust. J. Chem. 1994, 47, 2123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitFelurY%3D&md5=4652d4899079a77ceb04fae7bc3bd4a6CAS |
[4] D. Simoni, R. Rondanin, M. Morini, R. Baruchello, F. P. Invidiata, Tetrahedron Lett. 2000, 41, 1607.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslOisLg%3D&md5=3b5b15ebfbae24a37a314aa0b8c3e830CAS |
[5] K. S. Kim, J. H. Song, J. H. Kim, G. Seo, Stud. Surf. Sci. Catal. 2003, 146, 505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFGkt7s%3D&md5=e71dd3e007b53080c5b719385f17acb5CAS |
[6] G. Gelbard, Ind. Eng. Chem. Res. 2005, 44, 8468.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSjt73E&md5=7630bd4547881befd916966f39ce8e03CAS |
[7] G. Gelbard, F. Vielfaure-Joly, React. Funct. Polym. 2001, 48, 65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1Kmtbg%3D&md5=c7b2087e09a1783579672bf8aa22d428CAS |
[8] M. Benaglia, A. Puglisi, F. Cozzi, Chem. Res. 2003, 103, 3401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltV2ju78%3D&md5=9679f85197b7ea82cfcd73bd1320e62aCAS |
[9] Y. Chang, X. L. Shi, D. M. Zhu, Y. Liu, Polym. Adv. Technol. 2008, 19, 877.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVWrt7c%3D&md5=c99688130ec5952a0e039d6c4715c95cCAS |
[10] A. T. Dzhalilov, M. A. Askarov, SU 675056 Sovient Union, 1976.
[11] M. Henmi, M. Noyoro, T. Yoshioka, JP 0175041 Japan, 1989.
[12] T. Onozuka, M. Shindo, T. Ito, JP 0724334 Japan, 1995.
[13] M. Tomoi, K. Yamaguchi, R. Ando, Y. Kantake, Y. Aosaki, H. Kubota, J. Appl. Polym. Sci. 1997, 64, 1161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFSksLc%3D&md5=e6686c0c6f853ae897dd33ff2cf2c957CAS |
[14] D. P. Fairlie, W. G. Jackson, Inorg. Chem. 1990, 29, 140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXptVejtg%3D%3D&md5=768d2e39618b7bd623a28f9a48722df5CAS |
[15] S. E. Schneider, P. A. Bishop, M. A. Salazar, O. A. Bishop, E. V. Anslyn, Tetrahedron 1998, 54, 15063.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFWmuro%3D&md5=b73e64c643aae8974e521d0254cf9414CAS |
[16] D. Brunel, Microporous Mesoporous Mater. 1999, 27, 329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1OgsL0%3D&md5=3e6734a26ee873e7034bb412bc61be00CAS |
[17] D. Meloni, R. Monaci, Z. Zedde, M. G. Cutrufello, S. Fiorilli, I. Ferino, Appl. Catal. B 2011, 102, 505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyhs78%3D&md5=665831db225534a2f11f8f4429b7e7fdCAS |
[18] R. Sercheli, R. M. Vargas, R. A. Sheldon, J. Mol. Catal. Chem. 1999, 148, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVGmsrs%3D&md5=4b7ee35042a4e7a82ed75316217d1c45CAS |
[19] A. C. Blanc, D. J. Macquarrie, S. Valle, G. Renard, C. R. Quinn, D. Brunel, Green Chem. 2000, 2, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslWjtrk%3D&md5=82dd58579670485deada0a5afc7804b3CAS |
[20] U. Schuchardt, R. M. Vargas, G. Gelbard, J. Mol. Catal. Chem. 1996, 109, 37.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVyhsLs%3D&md5=5fe6d50211b14b805da581a36f5776a6CAS |
[21] B. N. Kolarz, A. W. Trochimczuk, D. Jermakowicz-Bartkowiak, J. Jezierska, W. Apostoluk, React. Funct. Polym. 2002, 52, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFCjsrY%3D&md5=7a8c359bd1ecce1f44b8934d92dab186CAS |
[22] Y. Zhang, J. Jiang, Y. Chen, Polymer 1999, 40, 6189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFCkt7k%3D&md5=d0306df234e02d80abf25d5c22616f98CAS |
[23] P. J. Bailey, S. Pace, Coord. Chem. Rev. 2001, 214, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslemsbg%3D&md5=0f1d8ebe68223ff2205fe47bb1dab55dCAS |
[24] M. L. Kantam, A. Ravindra, C. V. Reddy, B. Sreedhar, B. M. Choudary, Adv. Synth. Catal. 2006, 348, 569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislOrtrs%3D&md5=0e77d3698bf846042b06f2bfd744bcc2CAS |
[25] I. Rodriguez, S. Iborra, A. Corma, F. Rey, J. L. Jorda, Chem. Commun. 1999, 593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitV2lsro%3D&md5=0767a8b49cd347704b75a81cb0db672dCAS |
[26] B. L. He, W. Q. Huang, Ion Exchanger and Adsorptive Resins 1995 (Shanghai Scientific & Technological Press: Shanghai).
[27] A. Vogel, Handbook of Quantitative Inorganic Analysis 1978 (Longman: London).
[28] G. L. Xiao, Y. G. Fan, P. L. Helan, Z. Q. Shi, Ion Exch. Adsorp. 2005, 21, 514.
| 1:CAS:528:DC%2BD28XovFaqsro%3D&md5=652b5d911127da2e9596801c053ae79aCAS |
[29] J. A. Cabello, J. M. Campelo, A. Garcia, D. Luna, J. M. Marina, J. Org. Chem. 1984, 49, 5195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitlyitQ%3D%3D&md5=bb1251c5bbbce785c7c9989122d20081CAS |
[30] M. Waibel, J. Hasserodt, J. Org. Chem. 2008, 73, 6119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFKmur8%3D&md5=a392cecff006325644db4c77113138f7CAS | 18630876PubMed |