Facile Domino Access to Unexpected Alkyl 3-Substituted-2-hydroxy-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylates
Ya-Ru Zhang A , Xiao Huang A , Dong-Cheng Xu A and Jian-Wu Xie A BA Department of Chemistry and Life Science, Zhejiang Normal University, 321004 Jinhua, China.
B Corresponding author. Email: xiejw@zjnu.cn
Australian Journal of Chemistry 66(8) 959-962 https://doi.org/10.1071/CH13103
Submitted: 1 March 2013 Accepted: 30 April 2013 Published: 29 May 2013
Abstract
A new domino alkylation–cyclization–air-oxidation of 2-halo-1,3-dicarbonyl compounds with 2-aminophenols promoted by caesium salts under aerobic conditions has been developed. Unexpected alkyl 3-substituted-2-hydroxy-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylates, rather than normal ethyl 3,4-dihydro-2H-1,4-benzoxazine-2-carboxylate, were exclusively obtained under mild conditions. A plausible mechanism for this unprecedented reaction is also given.
References
[1] (a) E. Corey, Chem. Soc. Rev. 1988, 17, 111.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFCnur4%3D&md5=112570fcb70149040a621f9ad28d10b5CAS |
(b) F. A. Davis, B.-C. Chen, Chem. Rev. 1992, 92, 919.
| Crossref | GoogleScholarGoogle Scholar |
(c) B.-C. Chen, P. Zhou, F. A. Davis, E. Ciganek, Org. React. 2003, 62, 1.
(d) Organic Reactions (Eds L. E. Overman, D. Boger, A. Charette, S. E. Denmark, V. Farina, L. Hegedus, L. Kiessling, M. J. Martinelli, S. W. McCombie, T. V. Rajanbabu, J. H. Rigby, S. D. Rychnovsky, A. B. Smith III, P. Wipf) 2003, pp. 1–356 (John Wiley and Sons, Inc.: Hoboken, NJ).
[2] E. Vedejs, D. A. Engler, J. E. Telschow, J. Org. Chem. 1978, 43, 188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmtFKlsg%3D%3D&md5=b6a740ef72b8c9ab092b505d81e0eb75CAS |
[3] V. Nair, L. G. Nair, J. Mathew, Tetrahedron Lett. 1998, 39, 2801.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVemtbg%3D&md5=f9b52a00115cf6ddd2f56a6ea4157166CAS |
[4] R. Z. Andriamialisoa, N. Langlois, Y. Langlois, Tetrahedron Lett. 1985, 26, 3563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xhs1ygsL0%3D&md5=4f8ad0b538ae9c2829502572928ec09cCAS |
[5] W. Adam, A. Smerz, Tetrahedron 1996, 52, 5799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisVOmsLc%3D&md5=bc77a125ff95de64bf4a99206bf93d11CAS |
[6] T. Watanabe, T. Ishikawa, Tetrahedron Lett. 1999, 40, 7795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslaitL0%3D&md5=86214dfe91f1547466229017ba205e59CAS |
[7] Y. Monguchi, T. Takahashi, Y. Iida, Y. Fujiwara, Y. Inagaki, T. Maegawa, H. Sajiki, Synlett 2008, 2291.
| 1:CAS:528:DC%2BD1cXht1amsLrO&md5=bbc922c56181a8d1ca177916026249c5CAS |
[8] (a) P. Štefanič, K. Turnšek, D. Kikelj, Tetrahedron 2003, 59, 7123.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. Štefanič, M. Breznik, N. Lah, I. Leban, J. Plavec, D. Kikelj, Tetrahedron Lett. 2001, 42, 5295.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) Y. Sugimoto, T. Otani, S. Oie, K. Wierzba, Y. Yamada, J. Antibiot 1990, 43, 417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktVSht7c%3D&md5=bc26b04aa9a5dc293434125671cfded9CAS | 2161819PubMed |
(b) Y. S. Zhen, X. Y. Ming, B. Yu, T. Otani, H. Saito, Y. Yamada, J. Antibiot 1989, 42, 1294.
| Crossref | GoogleScholarGoogle Scholar |
[10] M. Beach, R. Frechette, WO Patent Appl., 9728167, 1997.
[11] (a) Q.-B. Li, F.-T. Zhou, Z.-G. Liu, X.-F. Li, W.-D. Zhu, J.-W. Xie, J. Org. Chem. 2011, 76, 7222.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFSms7s%3D&md5=2d47ebe7d3937e5ab77abd83a1e9d439CAS | 21793488PubMed |
(b) Y.-R. Zhang, J.-W. Xie, X.-J. Huang, W.-D. Zhu, Org. Biomol. Chem. 2012, 10, 6554.
| Crossref | GoogleScholarGoogle Scholar |
[12] D. A. Konen, L. S. Silbert, P. E. Pfeffer, J. Org. Chem. 1975, 40, 3253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlvFanu7g%3D&md5=ba6aeb125bf4203e56554e45208185f5CAS |