A Comparative Study of the Structural, Optical, and Electrochemical Properties of Squarate-Based Coordination Frameworks
Pavel M. Usov A , Tony D. Keene A B and Deanna M. D’Alessandro A CA School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
B School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia.
C Corresponding author. Email: deanna@chem.usyd.edu.au
Australian Journal of Chemistry 66(4) 429-435 https://doi.org/10.1071/CH12474
Submitted: 17 October 2012 Accepted: 24 November 2012 Published: 19 December 2012
Abstract
Systematic studies of the thermal expansion, optical, and redox properties of a series of six squarate-based frameworks, [MII(C4O4)(H2O)2] (MII = MnII, FeII, CoII, NiII, ZnII, CdII) have revealed that five members of the series exhibit cubic structures in which the squarate ligands are configured in an ‘eclipsed’ phase, while the CdII analogue exhibits a trigonal structure with a ‘staggered’ orientation of the ligands. The ‘eclipsed’ structures are characterised by a positive coefficient of thermal expansion, while the CdII analogue exhibits zero thermal expansion. Ultraviolet-visible-near infrared (UV-Vis-NIR) spectra and electrochemical measurements indicate that electron delocalisation across the dianionic squarate bridge is absent.
References
[1] (a) G. Seitz, P. Imming, Chem. Rev. 1992, 92, 1227.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlslSrs74%3D&md5=fc2dd7b66b22dc643812873b190e8676CAS |
(b) S. Cohen, J. R. Lacher, J. D. Park, J. Am. Chem. Soc. 1959, 81, 3480.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) C. R. Lee, C. C. Wang, Y. Wang, Acta Crystallogr. B 1996, 52, 966.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. A. Hall, D. J. Williams, Adv. Inorg. Chem. 2001, 52, 249.
[3] R. West, H. Y. Niu, J. Am. Chem. Soc. 1963, 85, 2589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksVOktb8%3D&md5=e29539f73438b90de45726577f0fa4eaCAS |
[4] A. Ludi, P. Schindle, Angew. Chem. Int. Ed. 1968, 7, 638.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkvVWnsrg%3D&md5=dbbce6414b19b95a74ae723312c4fba3CAS |
[5] M. Habenschuss, B. C. Gerstein, J. Chem. Phys. 1974, 61, 852.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltFaht7c%3D&md5=5340e4f0e2c55a8610f17921889e69daCAS |
[6] J. Greve, C. Nather, Acta Crystallogr. Sect. E Struct. Rep. Online 2002, 58, m625.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) S. Neeraj, M. L. Noy, C. N. R. Rao, A. K. Cheetham, Solid State Sci. 2002, 4, 1231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFCjtbc%3D&md5=8da0c5f4aaca40fad567f19882615c0bCAS |
(b) H. Kumagai, H. Sobukawa, M. Kurmoo, J. Mater. Sci. 2008, 43, 2123.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. Habenschuss, B. C. Gerstein, J. Chem. Phys. 1974, 61, 852.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltFaht7c%3D&md5=5340e4f0e2c55a8610f17921889e69daCAS |
[9] T. K. Maji, G. Mostafa, S. Sain, J. S. Prasad, N. R. Chaudhuri, CrystEngComm 2001, 3, 155.
| Crossref | GoogleScholarGoogle Scholar |
[10] D. M. D’Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqu7fL&md5=4201449bceae10de424b6532c764b445CAS |
[11] R. A. Bailey, W. N. Mills, W. J. Tangredi, J. Inorg. Nucl. Chem. 1971, 33, 2387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXltVClt7o%3D&md5=772b890590dc4c485f1d1e4475d85720CAS |
[12] R. D. Shannon, Acta Crystallogr. A 1976, 32, 751.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. E. Phillips, G. J. Halder, K. W. Chapman, A. L. Goodwin, C. J. Kepert, J. Am. Chem. Soc. 2010, 132, 10.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKgurfF&md5=2cafe87d48926b5e69f5d3656a78d807CAS |
[14] (a) Y. Wu, A. Kobayashi, G. J. Halder, V. K. Peterson, K. W. Chapman, N. Lock, P. D. Southon, C. J. Kepert, Angew. Chem. Int. Ed. 2008, 47, 8929.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVequ7fJ&md5=a660109f9df9c49e0d7c9ba857c7640bCAS |
(b) K. W. Chapman, P. J. Chupas, C. J. Kepert, J. Am. Chem. Soc. 2006, 128, 7009.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. L. Myrick, M. N. Simcock, M. Baranowski, H. Brooke, S. L. Morgan, J. N. McCutcheon, Appl. Spectrosc. Rev. 2011, 46, 140.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) G. Bussiere, C. Reber, J. Am. Chem. Soc. 1998, 120, 6306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFWjuro%3D&md5=2b97415a8a9b7673bcf5e6b972381c21CAS |
(b) D. R. Armstrong, R. Fortune, P. G. Perkins, J. Chem. Soc., Dalton Trans. 1976, 753.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. M. Aguilar, W. B. De Almeida, W. R. Rocha, Chem. Phys. Lett. 2007, 449, 144.
| Crossref | GoogleScholarGoogle Scholar |
[17] C. K. Jørgensen, Acta Chem. Scand. 1954, 8, 1495.
| Crossref | GoogleScholarGoogle Scholar |
[18] B. C. Gerstein, M. Habenschuss, J. Appl. Phys. 1972, 43, 5155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXmsVantw%3D%3D&md5=6697f8bb8310788ee518ce779ee8b04dCAS |
[19] P. Thompson, D. E. Cox, J. B. Hastings, J. Appl. Cryst. 1987, 20, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVGlsbo%3D&md5=6e5e8381b51f24cc4ca4d3221ba2937bCAS |
[20] L. W. Finger, D. E. Cox, A. P. Jephcoat, J. Appl. Cryst. 1994, 27, 892.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFCnsb0%3D&md5=299f75e8087d1049c387b1d48be49070CAS |
[21] B. A. Hunter, C. J. Howard, RIETICA: A Computer Program for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns 1998 (ANSTO: Lucas Heights, Australia).