Organosilver(i) Framework Assembly with Multinuclear Heteroaryl Ethynide Supramolecular Synthon R–C≡C⊃Agn (n = 4, 5)
Ping-Shing Cheng A , Sam C. K. Hau A and Thomas C. W. Mak A BA Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
B Corresponding author. Email: tcwmak@cuhk.edu.hk
Australian Journal of Chemistry 66(4) 419-428 https://doi.org/10.1071/CH12461
Submitted: 8 October 2012 Accepted: 18 November 2012 Published: 9 January 2013
Abstract
A series of six silver(i) trifluoroacetate complexes containing new ligands each composed of a quinolinyl or pyridyl nucleus bearing one or two terminal ethynyl substituent(s) has been synthesised. Single-crystal X-ray analysis of the complexes established the coordination preferences of the ethynide substituent(s) at variable positions with respect to the nitrogen donor atom, which serve as dominant factors in directing the construction of multi-dimensional organosilver(i) networks, which are consolidated by weak intermolecular interactions in supramolecular assembly.
References
[1] (a) T. K. Ronson, T. Lazarides, H. Adams, S. J. A. Pope, D. Sykes, S. Faulkner, S. J. Coles, M. B. Hursthouse, W. Clegg, R. W. Harrington, M. D. Ward, Chem. Eur. J 2006, 12, 9299.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Krtg%3D%3D&md5=ccd80e28e64259143016dd686978eab1CAS |
(b) F. Malvolti, P. Le Maux, L. Toupet, M. E. Smith, W. Y. Man, P. J. Low, E. Galardon, G. Simonneaux, F. Paul, Inorg. Chem. 2010, 49, 9101.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Nguyen, T. Phan, E. Van Caemelbecke, W. Kajonkijya, J. L. Bear, K. M. Kadish, Inorg. Chem. 2008, 47, 7775.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. L. Bandrowsky, J. B. Carroll, J. Braddock-Wilking, Organometallics 2011, 30, 3559.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Paul, F. Malvolti, G. da Costa, S. Le Stang, F. Justaud, G. Argouarch, A. Bondon, S. Sinbandhit, K. Costuas, L. Toupet, C. Lapinte, Organometallics 2010, 29, 2491.
| Crossref | GoogleScholarGoogle Scholar |
(f) H.-H. Chou, Y.-C. Lin, S.-L. Huang, Y.-H. Liu, Y. Wang, Organometallics 2008, 27, 5212.
| Crossref | GoogleScholarGoogle Scholar |
(g) V. Vajpayee, H. Kim, A. Mishra, P. S. Mukherjee, P. J. Stang, M. H. Lee, H. K. Kim, K.-W. Chi, Dalton Trans. 2011, 40, 3112.
| Crossref | GoogleScholarGoogle Scholar |
(h) Q. Ge, C. T. Corkery, M. G. Humphrey, M. Samoc, A. T. S. Hor, Dalton Trans. 2009, 38, 6192.
| Crossref | GoogleScholarGoogle Scholar |
(i) J. Forniés, S. Fuertes, A. Martín, V. Sicilia, B. Gil, E. Lalinde, Dalton Trans. 2009, 38, 2224.
| Crossref | GoogleScholarGoogle Scholar |
(j) P. Li, B. Ahrens, A. D. Bond, J. E. Davies, O. F. Koentjoro, P. R. Raithby, S. J. Teat, Dalton Trans. 2008, 37, 1635.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) L. Zhao, PhD Thesis: Multinuclear Silver-Ethynide Supramolecular Synthons for the Construction of Coordination Networks 2007 (The Chinese University of Hong Kong).
(b) L. Zhao, T. C. W. Mak, Inorg. Chem. 2009, 48, 6480.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) T. Zhang, J. Kong, Y. Hu, X. Meng, H. Yin, D. Hu, C. Ji, Inorg. Chem. 2008, 47, 3144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKqt70%3D&md5=f0b4319d54cf6ba084eb4707cc9b255dCAS |
(b) T. Zhang, H. Song, X. Dai, X. Meng, Dalton Trans. 2009, 38, 7688.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Zhang, Y. Hu, J. Kong, X. Meng, X. Dai, H. Song, CrystEngComm 2010, 12, 3027.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) T. C. W. Mak, L. Zhao, Chem. Asian J. 2007, 2, 456.and references therein
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVSnsro%3D&md5=2b4d7442d348ddbf7ba982c3fff19acbCAS |
(b) T. C. W. Mak, L. Zhao, X.-L. Zhao, in The Importance of Pi-Interactions in Crystal Engineering (Eds E. R. T. Tiekink, J. Zukerman-Schpector) 2012 Ch. 13, pp. 323–366, (Wiley: Chichester). The term “silver–ethynide” is preferred to “silver–ethynyl” because the silver–carbon bonding interaction is considered to be mainly ionic with minor covalent σ and π components; the negative charge residing mainly on the terminal C atom draws neighbouring AgI atoms close to one another to facilitate the onset of argentophilic Ag···Ag interactions.
[5] (a) G.-C. Guo, G.-D. Zhou, T. C. W. Mak, J. Am. Chem. Soc. 1999, 121, 3136.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFSjtr0%3D&md5=1eef6b66d864aeeb6e652aec98d3b550CAS |
(b) G.-C. Guo, G.-D. Zhou, Q.-G. Wang, T. C. W. Mak, Angew. Chem. Int. Ed. 1998, 37, 630.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q.-G. Wang, T. C. W. Mak, J. Am. Chem. Soc. 2001, 123, 1501.
| Crossref | GoogleScholarGoogle Scholar |
(d) Q.-M. Wang, T. C. W. Mak, Angew. Chem. Int. Ed. 2001, 40, 1130.
| Crossref | GoogleScholarGoogle Scholar |
(e) Q.-M. Wang, T. C. W. Mak, Chem. Commun. 2001, 807.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) V. Engelhardt, G. J. Garcia, A. A. Hubaud, K. A. Lyssenko, S. Spyroudis, T. V. Timofeeva, P. Tongwa, K. P. C. Vollhardt, Synlett 2011, 280.
| 1:CAS:528:DC%2BC3MXktVGktbg%3D&md5=52791bb400abb4bc62099155825a94a9CAS |
(b) Y. Shin, G. E. Fryxell, Chem. Mater. 2008, 20, 981.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) N. Schultheiss, C. L. Barnes, E. Bosch, Cryst. Growth Des. 2003, 3, 573.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOhsbg%3D&md5=1e24305956ac57337374835601a2a39dCAS |
(b) M. A. Fakhfakh, A. Fournet, E. Prina, J.-F. Mouscadet, X. Franck, R. Hocquemiller, B. Figadère, Bioorg. Med. Chem. 2003, 11, 5013.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Guo, W. Sun, Y. Liu, K. Schanze, Inorg. Chem. 2005, 44, 4055.
| Crossref | GoogleScholarGoogle Scholar |
[8] G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction of Area Detector Data 1996 (University of Göttingen: Göttingen, Germany).
[9] G. M. Sheldrick, SHELXTL 5.10 for Windows Structure Determination Software Programs 1997 (Bruker Analytical X-ray Systems, Inc.; Madison, WI).