Carboxylate-Bridged Dinuclear Dy2 Single-Molecule Magnets: Synthesis, Structure, and Magnetic Studies
Yu-mei Song A , Feng Luo A B , Yan Zhu A , Xiao-zhao Tian A and Gong-ming Sun AA College of Biology, Chemistry and Material Science, East China Institute of Technology, Fuzhou, 344000 Jiangxi, China.
B Corresponding author. Email: ecitluofeng@163.com
Australian Journal of Chemistry 66(1) 98-104 https://doi.org/10.1071/CH12377
Submitted: 13 August 2012 Accepted: 16 September 2012 Published: 22 October 2012
Abstract
In this work, the synthesis, structure, and magnetic studies of three dinuclear Dy2 compounds, namely Dy2(bpy)2(L)6 (1), Dy2(phen)2(L)6 (2), Dy2(μ-H2O)2(bpy)2(L)6 (3) are reported in detail, where HL, phen, and bpy are 4-chlorobenzoic acid, 1,10-phenanthroline, and 2,2′-bipyridine. Magnetic studies reveal the intramolecular ferromagnetic interaction and single-molecule magnetic properties of these compounds. The fine-tuned single-molecule magnet properties of compounds 1–3, mainly due to the difference of the coordination geometry of DyIII ions, are highlighted.
References
[1] (a) J. Tang, I. J. Hewitt, N. T. Madhu, G. Chastanet, W. Wernsdorfer, C. E. Anson, C. Benelli, R. Sessoli, A. K. Powell, Angew. Chem. Int. Ed. 2006, 45, 1729.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislSmurc%3D&md5=73c28f03ec2337b755096c1214d16525CAS |
(b) P.-H. Lin, T. J. Burchell, R. Clérac, M. Murugesu, Angew. Chem. Int. Ed. 2008, 47, 8848.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. J. Hewitt, J. Tang, N. T. Madhu, C. E. Anson, Y. Lan, J. Luzon, Angew. Chem. Int. Ed. 2010, 49, 6352.
| Crossref | GoogleScholarGoogle Scholar |
[2] R. A. Layfield, J. J. W. McDouall, S. A. Sulway, F. Tuna, D. Collison, R. E. P. Winpenny, Chem. – Eur. J. 2010, 16, 4442.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslOjsL4%3D&md5=65ab4eae996a2e546c8f0257ed66509aCAS |
[3] R. Sessoli, A. K. Powell, Coord. Chem. Rev. 2009, 253, 2328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKgtrzF&md5=88cf06c779be0625b10bdd80d999b966CAS |
[4] Y. Z. Zheng, Y. H. Lan, W. Wernsdorfer, C. E. Anson, A. K. Powell, Chem. – Eur. J. 2009, 15, 12566.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKgtrzJ&md5=8c8ddd7baef4750515fd5cecfe556a35CAS |
[5] N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu, J. Phys. Chem. B 2004, 108, 11265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1akt7g%3D&md5=cae5591ca0867add9c23d71fd942dea1CAS |
[6] (a) N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVGitrc%3D&md5=9a41dad73d585240014cfc2069eb9ee4CAS |
(b) N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem. Int. Ed. 2005, 44, 2931.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 2005, 127, 3650.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. D. Jiang, B. W. Wang, G. Su, Z. M. Wang, S. Gao, Angew. Chem. Int. Ed. 2010, 49, 7448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGrsbrO&md5=c51a4b99c53e8e51544936a57e97c9deCAS |
[8] G. F. Xu, Q. L. Wang, P. Gamez, Y. Ma, R. Clérac, J. K. Tang, S. P. Yan, P. Cheng, D. Z. Liao, Chem. Commun. 2010, 1506.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFyhtLY%3D&md5=822b1ea130a0e772f54497b73f91a2e5CAS |
[9] J. Long, F. Habib, P. Lin, I. Korobkov, G. Enright, L. Ungur, W. Wernsdorfer, L. F. Chibotaru, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 5319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFKnsrg%3D&md5=3d6e23af9544462d92b400c730c8602cCAS |
[10] M. G. B. Drew, Coord. Chem. Rev. 1977, 24, 179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtFCnu78%3D&md5=766020267179578504ec9964a39de8a3CAS |
[11] (a) F. Luis, M. J. Martínez-Pérez, O. Montero, E. Coronado, S. Cardona-Serra, C. Martí-Gastaldo, J. M. Clemente-Juan, J. Sesé, D. Drung, T. Schurig, Phys. Rev. B 2010, 82, 060403.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. Giraud, W. Wernsdorfer, A. M. Tkachuk, D. Mailly, B. Barbara, Phys. Rev. Lett. 2001, 87, 057203.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Wernsdorfer, T. Ohm, C. Sangregorio, R. Sessoli, D. Mailly, C. Paulsen, Phys. Rev. Lett. 1999, 82, 3903.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. E. Freedman, W. H. Harman, T. D. Harris, G. J. Long, C. J. Chang, J. R. Long, J. Am. Chem. Soc. 2010, 132, 1224.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, Nat. Chem. 2011, 3, 538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVGmt7o%3D&md5=a99daac36f002c9b49a1f754f8f7623eCAS |
(b) J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, J. Am. Chem. Soc. 2011, 133, 14236.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) Y. Wang, X. Li, T. W. Wang, Y. Song, X. Z. You, Inorg. Chem. 2010, 49, 969.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wlt7%2FN&md5=94c02eb79dbad4a9ac4ef8e299fc8bf7CAS |
(b) Y. G. Huang, X. T. Wang, F. L. Jiang, S. Gao, M. Y. Wu, Q. Gao, W. Wei, M. C. Hong, Chem. – Eur. J. 2008, 14, 10340.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Z. Zheng, Y. Lan, W. Wernsdorfer, C. E. Anson, A. K. Powell, Chem. – Eur. J. 2009, 15, 12566.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) A. Yamashita, A. Watanabe, S. Akine, T. Nabeshima, M. Nakano, T. Yamamura, T. Kajiwara, Angew. Chem. Int. Ed. 2011, 50, 4016.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCiurg%3D&md5=0e9b3fb594ba35cb99174af553f320c0CAS |
(b) A. Watanabe, A. Yamashita, M. Nakano, T. Yamamura, T. Kajiwara, Chem. – Eur. J. 2011, 17, 7428.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) R. J. Blagg, C. A. Muryn, E. J. L. McInnes, F. Tuna, R. E. P. Winpenny, Angew. Chem. Int. Ed. 2011, 50, 6530.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1eiurY%3D&md5=ae1ce00fe42991d9a7a4775f456a9c87CAS |
(b) S. D. Jiang, B. W. Wang, H. L. Sun, Z. M. Wang, S. Gao, J. Am. Chem. Soc. 2011, 133, 4730.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Ohtani, K. Yoneda, S. Furukawa, N. Horike, S. Kitagawa, A. B. Gaspar, M. C. Muñoz, J. Real, A. M. Ohba, J. Am. Chem. Soc. J. 2011, 133, 8600.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Barbara, Nature 1996, 383, 145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls12rsbo%3D&md5=b9477cdea8eedb6d08a95daee087b1eaCAS |
(b) Y. M. Song, F. Luo, M. B. Luo, Z. W. Liao, G. M. Sun, X. Z. Tian, Y. Zhu, Z. J. Yuan, S. J. Liu, W. Y. Xu, X. F. Feng, Chem. Commun. 2012, 1006.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Luo, Z. W. Liao, Y. M. Song, H. X. Huang, X. Z. Tian, G. M. Sun, Y. Zhu, Z. J. Yuan, M. B. Luo, S. J. Liu, W. Y. Xu, X. F. Feng, Dalton Trans. 2011, 40, 12651.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Zhu, F. Luo, Y. M. Song, H. X. Huang, G. M. Sun, X. Z. Tian, Z. J. Yuan, Z. W. Liao, M. B. Luo, S. J. Liu, W. Y. Xu, X. F. Feng, Dalton Trans. 2012, 41, 6749.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Luo, Y. M. Song, H. X. Huang, X. Z. Tian, G. M. Sun, Y. Zhu, X. F. Feng, Aust. J. Chem. 2012, 65, 1436.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) P. H. Lin, T. J. Burchell, R. Clérac, M. Murugesu, Angew. Chem. Int. Ed. 2008, 47, 8848.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCgtLbL&md5=cba47e9922ef8d897782e43eed1e1fc4CAS |
(b) S. D. Jiang, B. W. Wang, G. Su, Z. M. Wang, S. Gao, Angew. Chem. Int. Ed. 2010, 49, 7448.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. E. Freedman, W. H. Harman, T. D. Harris, G. J. Long, C. J. Chang, J. Am. Chem. Soc. 2010, 132, 1224.
| Crossref | GoogleScholarGoogle Scholar |