Towards Global Artificial Photosynthesis (Global Solar Fuels): Energy, Nanochemistry, and Governance
Thomas Faunce
+ Author Affiliations
- Author Affiliations
Australian Research Council Future Fellow, College of Medicine, Biology and the Environment, and College of Law, Energy Change Institute, Australian National University, Canberra, ACT 0200, Australia.
Email: Thomas.Faunce@anu.edu.au
Professor Thomas Faunce holds a joint appointment at the College of Medicine, Biology and the Environment, and College of Law at the ANU. He is an ARC Future Fellow. His most recent book (with Edward Elgar 2012) is Nanotechnology for a Sustainable World: Global Artificial Photosynthesis as the Moral Culmination of Nanotechnology. |
Australian Journal of Chemistry 65(6) 557-563 https://doi.org/10.1071/CH12193
Published: 21 June 2012
References
[1] B. Furnass, From Anthropocene to Sustainocene – Challenges and Opportunities. Public Lecture, 21 March 2012, Australian National University. Available at http://billboard.anu.edu.au/event_view.asp?id=85103 [verified 4 May 2012].[2] J. Sun, C. Liu, P. Yang, J. Am. Chem. Soc. 2011, 133, 19306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWmsrbK&md5=333efb28aa8b468ef34a74c4a8d41322CAS |
[3] S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, D. G. Nocera, Science 2011, 334, 645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7vF&md5=e0298161b92e218b9b45c56538dc6eb5CAS |
[4] Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 2011, 473, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCmtLg%3D&md5=f7b48594fae4a870a2b3d1c7ed10df43CAS |
[5] T. A. Faunce, Future Perspectives on Solar Fuels, in Molecular Solar Fuels 2012, Chapter 21, pp. 506–528, Book Series: Energy (Eds T. Wydrzynski, W. Hillier) (Royal Society of Chemistry: Cambridge, UK).
[6] G. Zhu, Y. V. Geletii, P. Kögerler, H. Schilder, J. Song, S. Lense, C. Zhao, K. I. Hardcastle, D. G. Musaev, C. L. Hill, Dalton Trans. 2012, 41, 2084.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aisb4%3D&md5=143dc73e0a29dc9786e41652e5b057c7CAS |
[7] L. M. Utschig, S. C. Silver, K. L. Mulfort, D. M. Tiede, J. Am. Chem. Soc. 2011, 133, 16334.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wks7jJ&md5=64e3295a117ddce1c1e975f4bffa6e22CAS |
[8] C. Carver, Z. Ulissi, C. K. Ong, S. Dennison, G. H. Kelsall, K. Hellgardt, Int. J. Hydrogen Energ. 2012, 37, 2911.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslKmsQ%3D%3D&md5=f785c45285ee2ff48a6d36f450bdf0daCAS |
[9] R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science 2011, 332, 805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslylsLk%3D&md5=7fef5a2be0a1e90cdea051d4e8001fa9CAS |
[10] F. J. Beck, S. Mokkapati, K. Catchpole, Opt. Express 2011, 19, 25230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OqurfN&md5=0c338dedaad61a0b94078e4a39439049CAS |
[11] E. Franklin, A. Blakers, V. Everett, Prog. Photovolt. Res. Appl. 2009, 17, 403.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2isrvP&md5=06548d15d4bbb9f97b43c8515f221383CAS |
[12] A. Magnuson, S. Styring, Aust. J. Chem. 2012, 65, 564.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. Messinger, Aust. J. Chem. 2012, 65, 573.
| Crossref | GoogleScholarGoogle Scholar |
[14] M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrbP&md5=4d554995a8442318e37fd3fd4f64344fCAS |
[15] Q. Yin, J. M. Tan, C. Besson, Y. V. Geletti, D. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, Science 2010, 328, 342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Sgtbs%3D&md5=31262becc276064b39f67eb7a54d16e6CAS |
[16] G. Swiegers, D. MacFarlane, D. Officer, A. Ballantyne, D. Boskovic, J. Chen, C. Dismukes, G. Gardner, R. Hocking, P. Smith, L. Spiccia, P. Wagner, G. Wallace, B. Winther-Jansen, O. Winther-Jansen, Aust. J. Chem. 2012, 65, 577.
| Crossref | GoogleScholarGoogle Scholar |
[17] G. Schlau-Cohen, G. Fleming, Aust. J. Chem. 2012, 65, 583.
| Crossref | GoogleScholarGoogle Scholar |
[18] J. Hughes, E. Krausz, Aust. J. Chem. 2012, 65, 591.
| Crossref | GoogleScholarGoogle Scholar |
[19] Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 2011, 473, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCmtLg%3D&md5=f7b48594fae4a870a2b3d1c7ed10df43CAS |
[20] R. Pace, R. Stranger, Aust. J. Chem. 2012, 65, 597.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Nat. Mater. 2011, 10, 456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVahurg%3D&md5=4d58cdee5d0bea10131040c0b389aafdCAS |
[22] R. Hocking, S. Chang, D. MacFarlane, L. Spiccia, Aust. J. Chem. 2012, 65, 608.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. Lee, Aust. J. Chem. 2012, 65, 615.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. Nolan, A. Iwaszuk, H. Tada, Aust. J. Chem. 2012, 65, 624.
| Crossref | GoogleScholarGoogle Scholar |
[25] B. Iandolo, M. Zäch, Aust. J. Chem. 2012, 65, 633.
| Crossref | GoogleScholarGoogle Scholar |
[26] A. Izgorodin, D. MacFarlane, Aust. J. Chem. 2012, 65, 638.
| Crossref | GoogleScholarGoogle Scholar |
[27] P. L. Dutton, C. C. Moser, Faraday Discuss. 2011, 148, 443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKju7rF&md5=efe94f4afdf90126838bd8a1853c402cCAS |
[28] W. Hillier, K. Hingorani, Aust. J. Chem. 2012, 65, 643.
| Crossref | GoogleScholarGoogle Scholar |
[29] D. Ollis, J.-L. Liu, B. Stevenson, Aust. J. Chem. 2012, 65, 652.
| Crossref | GoogleScholarGoogle Scholar |
[30] J. Hanlon, H. Reardon, N. Tapia-Ruiz, D. Gregory, Aust. J. Chem. 2012, 65, 656.
| Crossref | GoogleScholarGoogle Scholar |
[31] D. G. Nocera, Daedalus 2006, 135, 112.
| Crossref | GoogleScholarGoogle Scholar |
[32] L. Hammarström, S. Hammes-Schiffer, Acc. Chem. Res. 2009, 42, 1859.
| Crossref | GoogleScholarGoogle Scholar |
[33] A. B. Pittock, Climate Change: The Science, Impacts and Solutions 2009, 2nd edition, p. 177 (CSIRO Publishing: Melbourne).
[34] M. Leslie, Science 2009, 323, 1286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1emtrc%3D&md5=e023d438c5013d087641d4ac8b6a1210CAS |
[35] C. Beer, M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Carvalhais, Science 2010, 329, 834.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvV2iu7k%3D&md5=76e9d1de0457761fff119cc5a3438be4CAS |
[36] W. Hillier, T. Wydrzynski, Coord. Chem. Rev. 2008, 252, 306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFCitQ%3D%3D&md5=4995ae9650319109eb722a91b651a34cCAS |
[37] A. Kumar, D. D. Jones, M. A. Hann, Energies 2009, 2, 556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFCht7w%3D&md5=a173a90c8fc24d05d2fa2e2362102c1aCAS |
[38] M. Hoogwijk, A. Faaij, R. van den Broek, G. Berndes, D. Gielen, W. Turkenburg, Biomass Bioenerg. 2003, 25, 119.
[39] M. Parikka, Biomass Bioenerg. 2004, 27, 613.
| Crossref | GoogleScholarGoogle Scholar |
[40] G. Fischer, L. Schrattenholzer, Biomass Bioenerg. 2001, 20, 151.
| Crossref | GoogleScholarGoogle Scholar |
[41] United Nations, Millennium Development Goals. Available at http://www.un.org/millenniumgoals/ [verified 4 May 2012].
[42] T. A. Faunce, Nanotechnology for a Sustainable World. Global Artificial Photosynthesis as the Moral Culmination of Nanotechnology 2012 (Edward Elgar: Cheltenham, UK).
[43] T. A. Faunce, Asian J. WTO Int. Heal. 2011, 6, 313.
[44] Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, Science 2010, 328, 342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Sgtbs%3D&md5=31262becc276064b39f67eb7a54d16e6CAS |
[45] L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat. Chem. 2012, 4, 418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVehsL4%3D&md5=81282d1a8242f5b15dab1078e9869461CAS |
[46] United Nations, Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies, art 1, Jan. 27, 1967, 18 U.S.T. 2410, 610 U.N.T.S. 205.
[47] United Nations, Agreement Governing Activities of States on the Moon and Other Celestial Bodies, art. 1, Dec. 17, 1979, 18 I.L.M.1434.
[48] United Nations, Convention on the Law of the Sea, art. 1, para. 1, Dec. 10, 1982, 1833 U.N.T.S. 397.
[49] Antarctic Treaty art. VI., Dec. 1, 1959, 12 U.S.T. 794, 402 U.N.T.S. 72.
[50] UNESCO World Heritage Convention. Available at http://whc.unesco.org/en/conventiontext/ [verified 4 May 2012].
[51] T. A. Faunce, NanoEthics 2012, 6, 15.
| Crossref | GoogleScholarGoogle Scholar |
[52] J. Frakes, Wisc. Int. Law J. 2003, 21, 409.
[53] A. Pardo, P. Am. Soc. Int. Law 1968, 62, 216.
| Crossref | GoogleScholarGoogle Scholar |
[54] I. Kaul, in Limits to Privatisation 2006, p. 311 (Eds E. U. von Weisacker, O. R. Young, M. Finger) (Earthscan: Abingdon).
[55] T. A. Faunce, H. Nasu, Public Health Ethics 2008, 1, 146.
| Crossref | GoogleScholarGoogle Scholar |
[56] United Nations, International Covenant on Economic, Social and Cultural Rights. Adopted and opened for signature, ratification and accession by General Assembly resolution 2200A (XXI) of 16 December 1966. Available at http://www2.ohchr.org/english/law/cescr.htm, entry into force 3 January 1976.
[57] T. A. Faunce, Renewable Energy Law and Policy 2011, 2, 163.
[58] T. A. Faunce, Towards a Global Solar Fuel Project. Public Lecture, 30 April 2012, Imperial College, London. Available at http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/administration/energyfutureslab/eventssummary/event_3-4-2012-16-7-18 [verified 4 May 2012].
[59] United Nations, Sustainable Energy For All 2012. Available at http://sustainableenergyforall.org/index.php [verified 4 May 2012].