Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Novel Semiconducting Biomaterials Derived from a Proline Ester and Tetracyanoquinodimethane Identified by Handpicked Selection of Individual Crystals*

Lisandra L. Martin A D , Jinzhen Lu A , Ayman Nafady A , Thanh Hai Le A , Amal I. Siriwardana A B , Xiaohu Qu A , Daouda A. K. Traore C , Matthew Wilce C and Alan M. Bond A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B ARC Special Research Centre for Green Chemistry, Monash University, Clayton, Vic. 3800, Australia.

C Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic. 3800, Australia.

D Corresponding author. Email: lisa.martin@monash.edu

Australian Journal of Chemistry 65(7) 935-941 https://doi.org/10.1071/CH12183
Submitted: 5 April 2012  Accepted: 1 May 2012   Published: 2 August 2012

Abstract

Complex mixtures of cation : anion stoichometries often result from the syntheses of tetracyanoquinodimethane (TCNQ) salts, and often these cannot be easily separated. In this study, the reaction of N,N-dimethyl-d-proline-methylester (Pro(CH3)3+) with LiTCNQ resulted in a mixture of crystals. Hand selection and characterisation of each crystal type by X-ray, infrared, Raman and electrochemistry has provided two stoichometries, 1 : 1 [Pro(CH3)3TCNQ] and 2 : 3 ([(Pro(CH3)3)2(TCNQ)3]). A detailed comparison of these structures is provided. The electrochemical method provides an exceptionally sensitive method of distinguishing differences in stoichiometry. The room temperature conductivity of the mixture is 3.1 × 10–2 S cm–1, which lies in the semiconducting range.


References

[1]  M. T. Azcondo, L. Ballester, S. Golhen, A. Gutierrez, L. Ouahab, S. Yartsev, P. Delhaes, J. Mater. Chem. 1999, 9, 1237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtleru70%3D&md5=0a1389b97f0514886342b8229aea026aCAS |

[2]  X. Qu, A. Nafady, A. Mechler, J. Zhang, A. R. Harris, A. P. O'Mullane, L. L. Martin, A. M. Bond, J. Solid State Electrochem. 2008, 12, 739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVCqs74%3D&md5=eeea1164b4035da4ae4e9ba7fbd8bfc0CAS |

[3]  D. Jerome, Chem. Rev. 2004, 104, 5565.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVarsb0%3D&md5=d196ecff82e7c8ab1a1af4cb4aef869dCAS |

[4]  P. Cea, S. Martin, A. Villares, D. Mobius, M. C. Lopez, J. Phys. Chem. B 2006, 110, 963.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlagu7vK&md5=6acd716eacecd78dfc2051225bb394b8CAS |

[5]  Y. Morita, T. Murata, K. Fukui, S. Yamada, K. Sato, D. Shiomi, T. Takui, H. Kitagawa, H. Yamochi, G. Saito, K. Nakasuji, J. Org. Chem. 2005, 70, 2739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVSisbk%3D&md5=1d724882539d98f0159dfc2cd47751ceCAS |

[6]  J. S. Miller, A. J. Epstein, W. M. Reiff, Chem. Rev. 1988, 88, 201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXos1CjtA%3D%3D&md5=78c938d83e642871bd3d7f42dd2bd758CAS |

[7]  D. S. Acker, R. J. Harder, W. R. Hertler, W. Mahler, L. R. Melby, R. E. Benson, W. E. Mochel, J. Am. Chem. Soc. 1960, 82, 6408.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXnsF2jsQ%3D%3D&md5=3de3a83365dedf3455fe17e07f949638CAS |

[8]  G. X. Liu, H. Xu, X. M. Ren, W. Y. Sun, CrystEngComm 2008, 10, 1574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGltLbL&md5=4397e0e833f5e4bd984867aa4d468256CAS |

[9]  R. Muller, S. Jonge, K. Myny, D. J. Wouters, J. Genoe, P. Heremans, Solid-State Electron. 2006, 50, 601.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  T. Okamoto, M. Kozaki, M. Doe, M. Uchida, G. F. Wang, K. Okada, Chem. Mater. 2005, 17, 5504.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVequrfN&md5=91418287d984bc3787068d2e7453ddccCAS |

[11]  T. J. Wooster, A. M. Bond, Analyst 2003, 128, 1386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVOitrs%3D&md5=b5a2cab9bac85965917f40a1ac141867CAS |

[12]  T. J. Wooster, A. M. Bond, M. J. Honeychurch, Anal. Chem. 2003, 75, 586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1ar&md5=9f492b1939bea05d9e8cae22ff3c9b74CAS |

[13]  G. B. Gardner, D. Venkataraman, J. S. Moore, S. Lee, Nature 1995, 374, 792.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1Orsr8%3D&md5=ec0c66b9968107c17217b23bfcc4db9fCAS |

[14]  D. Venkataraman, G. B. Gardner, S. Lee, J. S. Moore, J. Am. Chem. Soc. 1995, 117, 11600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovF2gtrg%3D&md5=12cfe0bb3f877ee8d68af4ada95dbfc7CAS |

[15]  O. M. Yaghi, G. M. Li, H. L. Li, Nature 1995, 378, 703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSnt7rP&md5=1ba620d1d6d6addaa9a57c928cdf4162CAS |

[16]  A. Padhiyar, A. J. Patel, A. T. Oza, J. Phys. Condens. Matter 2007, 19, 486214.

[17]  X. Qu, J. Lu, C. Zhao, J. F. Boas, B. Moubaraki, K. S. Murray, A. Siriwardana, A. M. Bond, L. L. Martin, Angew. Chem. Int. Ed. 2011, 50, 1589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslygs7s%3D&md5=2932119f48c3c75e91edd4aeef43257eCAS |

[18]  W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=044d3a66cf8d76e0fc6868b1694ef3bbCAS |

[19]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOlsb8%3D&md5=b8ca8c15e12e7249c9068cf6390b143aCAS |

[21]  S. Flandrois, D. Chasseau, Acta Crystallogr. B 1977, 33, 2744.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  T. J. Kistenmacher, T. J. Emge, A. N. Bloch, D. O. Cowan, Acta Crystallogr. B 1982, 38, 1193.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  C. Zhao, A. M. Bond, J. Am. Chem. Soc. 2009, 131, 4279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivF2qtLw%3D&md5=5e0412b3aa10e2bfa8ee4f9aa8adc185CAS |

[24]  A. Nafady, A. M. Bond, A. P. O'Mullane, Inorg. Chem. 2009, 48, 9258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqt7bN&md5=836ec7d330b5da4a5e578f21d2593fb6CAS |

[25]  J. Lu, X. Qu, G. Peleckis, J. F. Boas, A. M. Bond, L. L. Martin, J. Org. Chem. 2011, 76, 10078.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCgt73M&md5=d72af65adce3f4a0900fc351eecceef6CAS |