Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Synthesis of Poly(2-Hydroxyethyl Methacrylate) Sponges via Activators Regenerated by Electron-transfer Atom-transfer Radical Polymerization*

Stefan M. Paterson A , David H. Brown A B , Jeremy A. Shaw C , Traian V. Chirila D E F G and Murray V. Baker A D H
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Biochemistry M313, The University of Western Australia, Crawley, WA 6009, Australia.

B Nanochemistry Research Institute, Department of Chemistry, Curtin University of Technology, Kent Street, Bentley, WA 6102, Australia.

C Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia.

D Queensland Eye Institute, 41 Annerley Road, South Brisbane, Qld 4101, Australia.

E Faculty of Science and Technology, Queensland University of Technology, Brisbane, Qld 4001, Australia.

F Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld 4072, Australia.

G Faculty of Health Science, University of Queensland, Herston, Qld 4006, Australia.

H Corresponding author. Email: murray.baker@uwa.edu.au

Australian Journal of Chemistry 65(7) 931-934 https://doi.org/10.1071/CH12161
Submitted: 20 March 2012  Accepted: 26 April 2012   Published: 22 June 2012

Abstract

Activators regenerated by electron-transfer atom-transfer radical polymerization, catalyzed by tris(2-pyridylmethyl)amine/CuBr2 and Na{Cu(Gly3)}, was used to synthesize poly(2-hydroxyethyl methacrylate) sponges from 80 : 20 H2O/2-hydroxyethyl methacrylate mixtures. Polymerization-induced phase separations resulted in sponges having morphologies based on agglomerated polymer droplets. During the synthesis of poly(2-hydroxyethyl methacrylate) sponges, first-order kinetics were observed up to a maximum of ~50 % conversion regardless of the catalyst used. The morphologies of the sponges were dependent on the rate of polymerization, slower polymerization rates resulting in polymers with larger morphological features (pores and polymer droplets).


References

[1]  O. Wichterle, D. Lim, Nature 1960, 185, 117.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  T. V. Chirila, I. J. Constable, G. J. Crawford, S. Vijayasekaran, D. E. Thompson, Y.-C. Chen, W. A. Fletcher, B. J. Griffin, Biomaterials 1993, 14, 26.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhslGksb0%3D&md5=4d5b8201c8802c013b42ee42ccbe87e6CAS |

[3]  C.-D. Young, J.-R. Wu, T.-L. Tsou, Biomaterials 1998, 19, 1745.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVanu78%3D&md5=853b4f8304d7583568716674020d5f19CAS |

[4]  T. V. Chirila, Biomaterials 2001, 22, 3311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsF2jsLo%3D&md5=5580adfa3c3990547aa53cdf0b2f5bddCAS |

[5]  G. W. Plant, A. R. Harvey, T. V. Chirila, Brain Res. 1995, 671, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFagtbo%3D&md5=2d5961f0420936907bb99c11a5b53cb0CAS |

[6]  G. W. Plant, T. V. Chirila, A. R. Harvey, Cell Transplant. 1998, 7, 381.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1cznsVSrsw%3D%3D&md5=1d254f3b9f2c2ffa6d892d5b914a6707CAS |

[7]  Y. S. Casadio, D. H. Brown, T. V. Chirila, H.-B. Kraatz, M. V. Baker, Biomacromolecules 2010, 11, 2949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSqt7bP&md5=65c0bca956bb6fa4e4bf9c5e7352e132CAS |

[8]  T. V. Chirila, Y.-C. Chen, B. J. Griffin, I. J. Constable, Polym. Int. 1993, 32, 221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvVWqtbY%3D&md5=de495797f8383fd74331429902bb3625CAS |

[9]  M. V. Baker, D. H. Brown, Y. S. Casadio, T. V. Chirila, Polymer 2009, 50, 5918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCqur%2FJ&md5=2fd57eab27434f9e8bc83c37631b1eeaCAS |

[10]  A. A. Sharkawy, B. Klitzman, G. A. Truskey, W. M. Reichert, J. Biomed. Mater. Res. A 1997, 37, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVWrsr0%3D&md5=f7200a9500b16f79e46981a13022388dCAS |

[11]  A. A. Sharkawy, B. Klitzman, G. A. Truskey, W. M. Reichert, J. Biomed. Mater. Res. A 1998, 40, 598.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivF2msrw%3D&md5=cd3752a1b1a1836e325989b88d92e98fCAS |

[12]  A. A. Sharkawy, B. Klitzman, G. A. Truskey, W. M. Reichert, J. Biomed. Mater. Res. A 1998, 40, 586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivF2ntrk%3D&md5=d391c9fd88cc8a720b7a813122da065eCAS |

[13]  D. J. Bennett, R. P. Burford, T. P. Davis, H. J. Tilley, Polym. Int. 1995, 36, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVelsL4%3D&md5=7b4f7209120bd982ad56815eafb1489dCAS |

[14]  D. Horák, P. Dvořák, A. Hampl, M. Šlouf, J. Appl. Polym. Sci. 2003, 87, 425.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  O. Kulygin, M. S. Silverstein, Soft Matter 2007, 3, 1525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVehsr3O&md5=0965d1ca8889a8db64be2f367ce3065fCAS |

[16]  J. V. M. Weaver, I. Bannister, K. L. Robinson, X. Bories-Azeau, S. P. Armes, Macromolecules 2004, 37, 2395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1yju7Y%3D&md5=5d9452734176145015390ed89e884b0aCAS |

[17]  S. M. Paterson, D. H. Brown, T. V. Chirila, I. Keen, A. K. Whittaker, M. V. Baker, J. Polym. Sci. A Polym. Chem. 2010, 48, 4084.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFSkurc%3D&md5=ee2e6ab8ec43e9b2688d6eeb5b0dfb19CAS |

[18]  C.-W. Chang, E. Bays, L. Tao, S. N. S. Alconcel, H. D. Maynard, Chem. Commun. 2009, 3580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFaqs7w%3D&md5=aa3473409da9cf4314dfe17a8e073247CAS |

[19]  K. Matyjaszewski, W. Jakubowski, K. Min, W. Tang, J. Huang, W. A. Braunecker, N. V. Tsarevsky, Proc. Natl. Acad. Sci. USA 2006, 103, 15309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCjtLrI&md5=3c4565dee15aded42bc76d246c415b8dCAS |

[20]  K. Matyjaszewski, H. Dong, W. Jakubowski, J. Pietrasik, A. Kusumo, Langmuir 2007, 23, 4528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVClt7g%3D&md5=d7f70c80c69ffa3883ced7bd71e5526bCAS |

[21]  I. Keen, L. Lambert, T. V. Chirila, S. M. Paterson, A. K. Whittaker, J. Biomim. Biomat. Tissue Eng. 2010, 6, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOntLvK&md5=2bd9a1fc6a8169f225ab9d57094b14bbCAS |

[22]  N. V. Tsarevsky, T. Pintauer, K. Matyjaszewski, Marcomolecules 2004, 37, 9768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSqtrzO&md5=c3979a06104e06f4fdcef1fd6e4219b8CAS |

[23]  G. Masci, D. Bontempo, N. Tiso, M. Diociaiuti, L. Mannina, D. Capitani, V. Crescenzi, Macromolecules 2004, 37, 4464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlWqsL8%3D&md5=57b3811037ec68c9e1a6ea9a41feb285CAS |

[24]  P. Iddon, K. Robinson, S. Armes, Polymer 2004, 45, 759.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslKisA%3D%3D&md5=d7d8e993008999c82af9688d3c463552CAS |