Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

DMF/H2O Volume-Ratio-Controlled Assembly of 2D and 3D Ln-MOFs with 5-(Pyridin-4-yl)isophthalic Acid Ligand

Qingfu Zhang A B , Falu Hu A , Suna Wang A , Dezhi Sun A , Daqi Wang A and Jianmin Dou A B
+ Author Affiliations
- Author Affiliations

A Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.

B Corresponding authors. Email: zhangqingfu@lcu.edu.cn; jmdou@lcu.edu.cn

Australian Journal of Chemistry 65(5) 524-530 https://doi.org/10.1071/CH12072
Submitted: 3 February 2012  Accepted: 20 March 2012   Published: 30 April 2012

Abstract

Through middle-temperature solvothermal reactions of Ln(NO3)3·6H2O (Ln = Tb and Eu) with 5-(pyridin-4-yl)isophthalic acid (H2PIA), three Ln-MOFs [Tb(HPIA)(PIA)(H2O)2]n·0.5nH2O (1), [Eu(HPIA)(PIA)(H2O)2]n·0.5nH2O (2), and [Tb2(PIA)3(H2O)4]n·3nH2O (3) were obtained using DMF/H2O volume ratios of 1 : 54, 1 : 54, and 1 : 7, respectively. Single-crystal X-ray diffraction analysis reveals that complexes 1 and 2 are isostructural and display a 2D uninodal 4-connected undulated sql topology with Ln3+ ions as nodes, while complex 3 exhibits a 3D uninodal 6-connected pcu topology with dinuclear octahedral [Tb2(CO2)6] secondary building units as nodes. Obviously, the DMF/H2O volume ratio plays an essential role in the crystallisation and construction of these coordination frameworks with distinct dimensionality and connectivity. The thermal and photoluminescence properties of complexes 13 in the solid state are also discussed.


References

[1]     (a) L. R. MacGillivray, Metal-Organic Frameworks: Design and Application 2010 (John Wiley & Sons, Inc.: New York, NY).
      (b) M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. J. Perry, J. A. Perman, M. J. Zaworotko, Chem. Soc. Rev. 2009, 38, 1400.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) O. K. Farha, J. T. Hupp, Acc. Chem. Res. 2010, 43, 1166.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. C. Hong, Cryst. Growth Des. 2007, 7, 10.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) G. Férey, Chem. Soc. Rev. 2008, 37, 191.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) X.-J. Ke, D.-S. Li, M. Du, Inorg. Chem. Commun. 2011, 14, 788.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) R. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. Young, D. Q. Yuan, D. Zhao, W. J. Zhuang, H.-C. Zhou, Coord. Chem. Rev. 2009, 253, 3042.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagt7zM&md5=f80f30bb411cd74b0be89e674f020087CAS |
      (b) J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. J. Murray, M. Dinc, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Y. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Y. J. Cui, Y. F. Yue, G. D. Qian, B. L. Chen, Chem. Rev. 2012, 112, 1126.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) B. Y. Li, Z. J. Zhang, Y. Li, K. X. Yao, Y. H. Zhu, Z. Y. Deng, F. Yang, X. J. Zhou, G. H. Li, H. H. Wu, N. Nijem, Y. J. Chabal, Z. P. Lai, Y. Han, Z. Shi, S. H. Feng, J. Li, Angew. Chem. Int. Ed. 2012, 51, 1412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12gsbbK&md5=a66e1c851e45cc3a0762e730f2a26a20CAS |
      (b) Q. P. Lin, T. Wu, S.-T. Zheng, X. H. Bu, P. Y. Feng, J. Am. Chem. Soc. 2012, 134, 784.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. S. Bae, C. Y. Lee, K. C. Kim, O. K. Farha, P. Nickias, J. T. Hupp, S. T. Nguyen, R. Q. Snurr, Angew. Chem. Int. Ed. 2012, 51, 1857.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Wu, J. Yang, Z.-M. Su, S. R. Batten, J.-F. Ma, J. Am. Chem. Soc. 2011, 133, 11406.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) F. N. Dai, H. Y. He, D. F. Sun, J. Am. Chem. Soc. 2008, 130, 14064.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) H.-Y. Li, L. Jiang, H. Xiang, T. A. Makal, H.-C. Zhou, T.-B. Lu, Inorg. Chem. 2011, 50, 3177.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. J. Jiang, Y. R. Liu, R. Yang, M. Pan, R. Cao, C. Y. Su, CrystEngComm 2008, 10, 1147.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) D. Zhao, D. J. Timmons, D. Yuan, H.-C. Zhou, Acc. Chem. Res. 2011, 44, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ksbfO&md5=ae00a3cda8b4ef05146486de190e03aaCAS |
      (b) S. L. Qiu, G. S. Zhu, Coord. Chem. Rev. 2009, 253, 2891.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Du, X.-J. Jiang, X.-J. Zhao, Inorg. Chem. 2006, 45, 3998.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Du, Z.-H. Zhang, L.-F. Tang, X.-G. Wang, X.-J. Zhao, S. R. Batten, Chem. – Eur. J. 2007, 13, 2578.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Du, X.-J. Jiang, X.-J. Zhao, Inorg. Chem. 2007, 46, 3984.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) J. J. Zhang, L. Wojtas, R. W. Larsen, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc. 2009, 131, 17040.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKrsb%2FF&md5=0f0f0e8a9e7422cf76e38c835867fdcaCAS |
      (b) Z. Su, J. Fan, T. Okamura, W.-Y. Sun, N. Ueyama, Cryst. Growth Des. 2010, 10, 3515.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P.-X. Yin, J. Zhang, Y.-Y. Qin, J.-K. Cheng, Z.-J. Li, Y.-G. Yao, CrystEngComm 2011, 13, 3536.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C.-C. Wang, C.-H. Yang, G.-H. Lee, Eur. J. Inorg. Chem. 2006, 820.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) X. X. Xu, Y. Lu, E. B. Wang, Y. Ma, X. L. Bai, Cryst. Growth Des. 2006, 6, 2029.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C.-P. Li, M. Du, Chem. Commun. (Camb.) 2011, 47, 5958.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVyju78%3D&md5=3e65630e21542e9c5826184a829f0574CAS |

[7]  (a) V. R. Pedireddi, S. Varughese, Inorg. Chem. 2004, 43, 450.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVSnt7w%3D&md5=0e236402906ea032549fbe2a70730218CAS |
      (b) M. Du, X.-G. Wang, Z.-H. Zhang, L.-F. Tang, X.-J. Zhao, CrystEngComm 2006, 8, 788.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S.-C. Chen, Z.-H. Zhang, K.-L. Huang, Q. Chen, M.-Y. He, A.-J. Cui, C. Li, Q. Liu, M. Du, Cryst. Growth Des. 2008, 8, 3437.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  H. Xu, Z. Y. Chao, Y. L. Sang, H. W. Hou, Y. T. Fan, Inorg. Chem. Commun. 2008, 11, 1436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVChtL7I&md5=eed982459365fe6b70f012f07d9975ecCAS |

[9]  A. Y. Fu, Y. L. Jiang, Y. Y. Wang, X. N. Gao, G. P. Yang, L. Hou, Q. Z. Shi, Inorg. Chem. 2010, 49, 5495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Shs7Y%3D&md5=aa3a989e015172e40cbcb97d3b3f8ebcCAS |

[10]  D. W. Min, S. W. Lee, Inorg. Chem. Commun. 2002, 5, 978.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVWmtLo%3D&md5=393660550a3393eb63dbd507aa1c8c31CAS |

[11]  (a) K. L. Huang, G. H. Li, Y. T. He, R. D. Huang, W. L. Pan, C. W. Hu, J. Mol. Struct. 2007, 841, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVagurw%3D&md5=4d41475f5fd88a894fb2149d913b7dafCAS |
      (b) K. L. Huang, C. W. Hu, Inorg. Chim. Acta 2007, 360, 3590.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J.-Y. Kim, A. J. Norquist, D. O’Hare, J. Am. Chem. Soc. 2003, 125, 12688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFyrtLY%3D&md5=2f2e9ee3e91a3d9cbb0952fa3496c5c8CAS |

[13]  H. Wu, J.-F. Ma, Y.-Y. Liu, J. Yang, H.-Y. Liu, CrystEngComm 2011, 13, 7121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKgsb3L&md5=a49b490fab44dbfb20f68c728fc4af7cCAS |

[14]  H. Y. Deng, J. R. He, M. Pan, L. Li, C. Y. Su, CrystEngComm 2009, 11, 909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyksLc%3D&md5=19e4551c09739c300e66ac7a5ebde53eCAS |

[15]  W. L. Jorgensen, D. L. Severance, J. Am. Chem. Soc. 1990, 112, 4768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFynsrk%3D&md5=3257066ad32cb7f69c5de3f2b0c2d90bCAS |

[16]  A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=1f80ec285a5e9701cccf4ab79694aea5CAS |

[17]  G. H. Jia, G. L. Law, K. L. Wong, P. A. Tanner, W. T. Wong, Inorg. Chem. 2008, 47, 9431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFeisLbE&md5=d2e6456c04589ca48872d1918f803219CAS |

[18]  H.-B. Zhang, Y. Peng, X.-C. Shan, C.-B. Tian, P. Lin, S.-W. Du, Inorg. Chem. Commun. 2011, 14, 1165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslaktbY%3D&md5=afc2046e3f69bbee651f1ef0b10f2af8CAS |

[19]  M. O’Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, Acc. Chem. Res. 2008, 41, 1782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SgsrjF&md5=f889a4b6aaa024dc86df53397f62d6b3CAS |

[20]  M. D. Allendorf, C. A. Bauer, R. K. Bhaktaa, R. J. T. Houka, Chem. Soc. Rev. 2009, 38, 1330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamurg%3D&md5=f89baf25712f428e75cb6dd69fefc520CAS |

[21]  (a) M. Y. Wu, F. L. Jiang, Y. F. Zhou, R. Feng, L. Chen, M. C. Hong, Inorg. Chem. Commun. 2012, 15, 301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yns7fL&md5=6b75ffc871c86723b18d3a3b2fc46f66CAS |
      (b) L. Liang, G. Peng, L. Ma, L. Sun, H. Deng, H. Li, W. S. Li, Cryst. Growth Des. 2012, 12, 1151.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Benisvy, P. Gamez, W. T. Fu, H. Kooijman, A. L. Spek, A. Meijerink, J. Reedijk, Dalton Trans. 2008, 3147,
         | Crossref | GoogleScholarGoogle Scholar |

[22]  C.-H. Ye, H.-L. Sun, X.-Y. Wang, J.-R. Li, D.-B. Nie, W.-F. Fu, S. Gao, J. Solid State Chem. 2004, 177, 3735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVOqu7g%3D&md5=0388e4f39ede987df98266b1508714beCAS |

[23]  (a) B. R. Judd, Phys. Rev. 1962, 127, 750.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xkslens7c%3D&md5=2f00d14256e8a26025f34214268c55e6CAS |
      (b) G. S. Ofelt, J. Chem. Phys. 1962, 37, 511.
         | Crossref | GoogleScholarGoogle Scholar |

[24]     (a) G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution 1997 (University of Göttingen: Göttingen).
         (b) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement 1997 (University of Göttingen: Göttingen).