Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Electronic Structure Underlying Colour Differences Between Diarylmethane Dyes and their Azomethine Analogues

Seth Olsen
+ Author Affiliations
- Author Affiliations

School of Mathematics and Physics, The University of Queensland, Brisbane, Qld 4072, Australia. Email: seth.olsen@uq.edu.au

Australian Journal of Chemistry 65(5) 520-523 https://doi.org/10.1071/CH12006
Submitted: 10 January 2012  Accepted: 21 March 2012   Published: 26 April 2012

Abstract

We show that multireference perturbation theory based on a four-electron, three-orbital state-averaged complete active space self-consistent field model can reproduce the shift in colour between diarylmethane dyes and their corresponding azomethine analogues. We relate the azomethine shift to changes in the electronic structure, through an examination of the relative changes in the state-averaged one-electron Hamiltonian (Fock) and surprisal matrices that characterise the analogous self-consistent field solutions.


References

[1]  J. Griffiths, Colour and Constitution of Organic Molecules 1976, pp. 240–270 (Academic Press: London).

[2]  C. Kitts, Ts. Beke-Somfai, B. Nordén, Biochemistry 2011, 50, 3451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVKhsr8%3D&md5=66d2a6373dcb5386b2f580728b2cd9e9CAS |

[3]  C. Bagshaw, D. Cherny, Biochem. Soc. Trans. 2006, 34, 979.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWnsb3F&md5=4212aee61e974eff15688874c16ab4d6CAS |

[4]  J. Platt, J. Chem. Phys. 1956, 25, 80.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28Xns1Gnug%3D%3D&md5=b467f2981adb5d8b6ce1f7149a8b0eabCAS |

[5]  S. Olsen, R. H. McKenzie, J. Chem. Phys. 2009, 131, 234306.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  S. Olsen, J. Chem. Theory Comput. 2010, 6, 1089.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFOlt7g%3D&md5=c65749fd486d526bc58783f0e5c12778CAS |

[7]  S. Olsen, R. McKenzie, J. Chem. Phys. 2011, 134, 114520.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. Olsen, J. Phys. Chem. A 2012, 116, 1486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVGmug%3D%3D&md5=0198c6f0abf875799b6c2dddb0b2d80fCAS |

[9]  H.-J. Werner, W. Meyer, J. Chem. Phys. 1981, 74, 5794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktFejtL0%3D&md5=172bc64340232b6b3af3edce65f87191CAS |

[10]  P. Celani, H. Werner, J. Chem. Phys. 2000, 112, 5546.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsl2is7o%3D&md5=a645c748b1d6ce7fba601540e29c7ff8CAS |

[11]  J. Finley, P. Å. Malmqvist, B. O. Roos, L. Serrano-Andrés, Chem. Phys. Lett. 1998, 288, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtVamur0%3D&md5=776a54cc822c0cbcb673ab2513ddeecdCAS |

[12]  T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=47e0abd7cf106f89c482d530f7994823CAS |

[13]  A. El Azhary, G. Rauhut, P. Pulay, H.-J. Werner, J. Chem. Phys. 1998, 108, 5185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvValtLw%3D&md5=42c3704ba4f596b9eaa7e0201b29e61fCAS |

[14]  P. Pulay, T. P. Hamilton, J. Chem. Phys. 1988, 88, 4926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltlGisL0%3D&md5=53004a27a8750f35946e063e660bef11CAS |

[15]  H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, D. P. O'Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO version 2010.1, http://www.molpro.net.

[16]  F. Terenziani, O. Przhonska, S. Webster, L. Padilha, Y. Slominsky, I. Davydenko, A. O. Gerasov, Y. P. Kovtun, M. P. Shandura, A. D. Kachkovski, D. J. Hagan, E. W. Van Stryland, A. Painelli, J Phys. Chem. Lett. 2010, 1, 1800.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Shu7w%3D&md5=38de77375c824c4100cdc3731241f5ceCAS |

[17]  J. Craw, J. Reimers, G. Backsay, A. Wong, N. Hush, Chem. Phys. Lett. 1992, 167, 77.
         | 1:CAS:528:DyaK38XmtlCrs7w%3D&md5=3ec105c793e4714a222c76627bb482f4CAS |

[18]  C. Aaron, C. Barker, J. Chem. Soc. 1963, 2655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXotVyqtQ%3D%3D&md5=060646bfc038fb8f98204af6e2bd06b0CAS |

[19]  L. Brooker, R. Sprague, J. Am. Chem. Soc. 1941, 63, 3203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH38XivVWi&md5=cc7f0c9bc5db8584163a5185309f7b62CAS |

[20]  L. Brooker, R. Sprague, J. Am. Chem. Soc. 1941, 63, 3214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH38XivVWh&md5=2b10f88940bcc97e6a4371f73436e2d4CAS |

[21]  Z. Azizi, B. O. Roos, V. Veryazov, Phys. Chem. Chem. Phys. 2006, 8, 2727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xltl2rurY%3D&md5=65f8109ca176b032b7433f81da806314CAS |

[22]  B. Roos, K. Andersson, M. Fülscher, L. Serrano-Andrés, K. Pierloot, M. Merchán, V. Molina, J. Mol. Struct. Theochem 1996, 388, 257.
         | 1:CAS:528:DyaK2sXhtVGmu70%3D&md5=62da3d7fe418b569e4380ecb870d8eddCAS |

[23]  S. Shaik, New J. Chem. 2007, 31, 2015.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGgur7N&md5=e3be364f01dba85ae22e7ddeabd0a564CAS |

[24]  J. E. Subotnik, S. Yeganeh, R. J. Cave, M. A. Ratner, J. Chem. Phys. 2008, 129, 244101.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  R. Levine, Acc. Chem. Res. 1974, 7, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXnvVOq&md5=95218d3d7d73694f46a3711d195a1ef8CAS |

[26]  R. Levine, J. Phys. Chem. 1985, 89, 2122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitV2mtb4%3D&md5=b40e22013b35b7342ebe9c575f415c7dCAS |

[27]  R. D. Levine, Annu. Rev. Phys. Chem. 1978, 29, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXht1yhsg%3D%3D&md5=938feddb29ee400d3169584f42f5f9a1CAS |

[28]  R. D. Levine, Adv. Chem. Phys. 1981, 47, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktFartbo%3D&md5=3e3e7f3288e6cccf1d3b8e5e6184525cCAS |

[29]  N. Tishby, R. Levine, Chem. Phys. Lett. 1984, 104, 4.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtV2qsL8%3D&md5=f61f1f3f8a080629d908685fa0a9e905CAS |

[30]  N. Tishby, R. Levine, Phys. Rev. A 1984, 30, 1477.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  C. Hansch, A. Leo, R. Taft, Chem. Rev. 1991, 91, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1ehsLo%3D&md5=a54730ac5bb282c7be482508a5e0092eCAS |

[32]  F. Terenziani, A. Painelli, D. Comoretto, J. Phys. Chem. A 2000, 104, 11049.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1Ohu7s%3D&md5=6186147f7df09991b55a7d5af7980f1cCAS |