Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Cyclic Carbonate From Carbon Dioxide and Epoxide Using Amino Acid Ionic Liquid Under 1 atm Pressure

Qing Gong A , Huadong Luo A , Jin Cao A , Yuhan Shang A , Haibo Zhang A B , Wenjing Wang A and Xiaohai Zhou A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.

B Corresponding author. Email: haibozhang1980@gmail.com (H. B. Zhang); zxh7954@hotmail.com (X. H. Zhou)

Australian Journal of Chemistry 65(4) 381-386 https://doi.org/10.1071/CH11462
Submitted: 6 December 2011  Accepted: 13 February 2012   Published: 20 March 2012

Abstract

Herein, we report an effective synthesis of cyclic carbonates by cycloaddition of carbon dioxide to epoxide using a modified amino acid ionic liquid as catalyst under 1 atm pressure. With triethylamine as co-catalyst, the catalytic activity of the l-proline based ionic liquid was greatly enhanced, and up to 97 % isolated yield of cyclic carbonate was achieved at 90°C under atmospheric pressure without organic solvent and metal component.


References

[1]  P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, I. J. Totterdell, Nature 2000, 408, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFChsLk%3D&md5=fb63e1fb5d7c1785fa1280677e3b0191CAS |

[2]  W. Cramer, A. Bondeau, F. I. Woodward, I. C. Prentice, R. A. Betts, V. Brovkin, P. M. Cox, V. Fisher, J. A. Foley, A. D. Friend, C. Kucharik, M. R. Lomas, N. Ramankutty, S. Sitch, B. Smith, A. White, C. Y. Molling, Glob. Change Biol. 2001, 7, 357.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  A. Behr, Angew. Chem. Int. Ed. Engl. 1988, 27, 661.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  D. H. Gibson, Chem. Rev. 1996, 96, 2063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFWns70%3D&md5=2f24b227af2ce4258bf4cc5b86528d41CAS |

[5]  P. G. Jessop, F. Joo, C. C. Tai, Coord. Chem. Rev. 2004, 248, 2425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVagsL3M&md5=701b1c93d5608d69a98e46fa770f45afCAS |

[6]  S. N. Riduan, Y. Zhang, J. Y. Ying, Angew. Chem. Int. Ed. 2009, 121, 3372.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  T. Sakakura, J. C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlaksrc%3D&md5=203dccf1ff930db977fcc8e7e2aeb6bbCAS |

[8]  K. M. Yu, I. Curcic, J. Gabriel, S. C. Tsang, ChemSusChem 2008, 1, 893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2ls73N&md5=3fd48b053a23b716a04d581a4e0a5fefCAS |

[9]  S. N. Riduan, Y. G. Zhang, Dalton Trans. 2010, 39, 3347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslWjsro%3D&md5=81cf301b46737c68aea4f93f827c5f50CAS |

[10]  T. Sakakura, K. Kohno, Chem. Commun. (Camb.) 2009, 1312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFKntLw%3D&md5=b5dfab1aadb33de92c9adcf0712ab817CAS |

[11]  M. Yoshida, M. Ihara, Chem – Eur. J. 2004, 10, 2886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVOgtLw%3D&md5=5d24b14151c84170bdc633d42033529dCAS |

[12]  J. Bayardon, J. Holz, B. Schäffner, V. Andrushko, S. Verevkin, A. Preetz, A. Börner, Angew. Chem. Int. Ed. 2007, 46, 5971.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlalur4%3D&md5=cf72b90350ae1cadc40aba77ba722df2CAS |

[13]  J. H. Clements, Ind. Eng. Chem. Res. 2003, 42, 663.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFerug%3D%3D&md5=b7ced9f1a2bd6ddb1fbcc4209161c0b0CAS |

[14]  A. A. G. Shaikh, S. Sivaram, Chem. Rev. 1996, 96, 951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xitl2rtbk%3D&md5=3bd445100ad31595a3ef588d150e0363CAS |

[15]  R. L. Paddock, S. T. Nguyen, J. Am. Chem. Soc. 2001, 123, 11498.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVGnuro%3D&md5=cca06595870d134d71c2312a17e71f4bCAS |

[16]  Y. M. Shen, W. L. Duan, M. Shi, J. Org. Chem. 2003, 68, 1559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Krug%3D%3D&md5=9203054f823aec74200689355d47c937CAS |

[17]  V. Calo, A. Nacci, A. Monopoli, A. Fanizzi, Org. Lett. 2002, 4, 2561.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVygurc%3D&md5=0f4b8e6fca839129134583e57cb7ea35CAS |

[18]  T. Yano, H. Matsui, T. Koike, H. Ishiguro, H. Fujihara, M. Yoshihara, T. Maeshima, Chem. Commun. (Camb.) 1997, 1129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlSgs78%3D&md5=f3363ff24d6289aa5b15c3d67765a240CAS |

[19]  K. Yamaguchi, K. Ebitani, T. Yoshida, H. Yoshida, K. Kaneda, J. Am. Chem. Soc. 1999, 121, 4526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFGlt74%3D&md5=9135d4dabb82911eaae86957f911fba8CAS |

[20]  Y. M. Shen, W. L. Duan, M. Shi, Adv. Synth. Catal. 2003, 345, 337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVCgtbk%3D&md5=26cbe1d6453cebc9d700d0fee7d2bf15CAS |

[21]  B. Barkakaty, K. Morino, A. Sudo, T. Endo, Green Chem. 2010, 12, 42.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFCqtQ%3D%3D&md5=2084bda7b47f5da0a573e50c052a59e1CAS |

[22]  N. Kihara, N. Hara, T. Endo, J. Org. Chem. 1993, 58, 6198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslSgsLw%3D&md5=9209367647d7518a765143b670c3ed9cCAS |

[23]  J. Melendez, M. North, R. Pasquale, Eur. J. Inorg. Chem. 2007, 2007, 3323.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  S. F. Yin, S. Shimada, Chem. Commun. (Camb.) 2009, 1136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFKntr4%3D&md5=02b3f40e5752530a125c75a5e1384677CAS |

[25]  C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, E. J. Maginn, J. Am. Chem. Soc. 2004, 126, 5300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Wht74%3D&md5=87fb5bb9f28a80c9224cfafd01ccc65dCAS |

[26]  M. B. Shiflett, A. Yokozeki, Ind. Eng. Chem. Res. 2005, 44, 4453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVKrt7s%3D&md5=df0f6fdddd74252e34ac9017764e7abbCAS |

[27]  J. M. Sun, S. Fujita, M. Arai, J. Organomet. Chem. 2005, 690, 3490.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVCksbg%3D&md5=52e79b9b4aed64db70e5a1fcc5e2dc1bCAS |

[28]  J. Q. Wang, X. D. Yue, F. Cai, L. N. He, Catal. Commun. 2007, 8, 167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivFentg%3D%3D&md5=7738fb919eaeb9a49dd86d4e4b8eb49cCAS |

[29]  E. H. Lee, J. Y. Ahn, M. M. Dharman, D. W. Park, S. W. P. I. Kim, Catal. Today 2008, 131, 130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2jsL8%3D&md5=b1edddcfa2fd4d3caa7b4e4f72c108e8CAS |

[30]  S. Udayakumar, S. W. Park, D. W. Park, B. S. Choi, Catal. Commun. 2008, 9, 1563.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVShs78%3D&md5=4f9b7939de5aa4fa4c1343b877257cceCAS |

[31]  C. Qi, H. Jiang, Z. Wang, B. Zou, S. Yang, Synlett. 2007, 2, 0255.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  H. F. Jiang, J. W. Ye, C. R. Qi, L. B. Huang, Tetrahedron Lett. 2010, 51, 928.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVGmsQ%3D%3D&md5=cd08e233266c1e674999c79048ba675eCAS |

[33]  H. F. Jiang, B. Z. Yuan, C. R. Qi, Chin. J. Chem. 2008, 26, 1305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFejtr3J&md5=09b3c26ba97a285666553c087197afe4CAS |

[34]  C. R. Qi, H. F. Jiang, Sci. China-Chem 2010, 53, 1566.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFSrsLk%3D&md5=b7e381299d5f06dde0f54110041408ffCAS |

[35]  F. Wu, X. Y. Dou, L. N. He, C. X. Miao, Lett. Org. Chem. 2010, 7, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1Cjsbc%3D&md5=8b3f86956d4f4e9f1198b03bab54de1fCAS |

[36]  W. Yu, H. B. Zhang, L. Zhang, X. H. Zhou, Aust. J. Chem. 2010, 63, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVagtr4%3D&md5=575a0467d965b3280ba60e285c82a5b9CAS |

[37]  M. North, R. Pasquale, Angew. Chem. Int. Ed. 2009, 121, 2990.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  P. G. Jessop, D. J. Heldebrant, X. W. Li, C. A. Eckert, C. L. Liotta, Nature 2005, 436, 1102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovVOgs7c%3D&md5=38ab12fd2aca1dc73638a730b253110dCAS |

[39]  H. S. Gao, Z. G. Hu, J. J. Wang, Z. F. Qiu, F. Q. Fan, Aust. J. Chem. 2008, 61, 521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFGhtrc%3D&md5=46fe9d2f16584ad165c478b246d3ade3CAS |