Efficient Iron-Catalyzed N-Demethylation of Tertiary Amine-N-oxides under Oxidative Conditions
Gaik B. Kok A and Peter J. Scammells A BA Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Vic. 3052, Australia.
B Corresponding author. Email: peter.scammells@monash.edu
Australian Journal of Chemistry 64(11) 1515-1521 https://doi.org/10.1071/CH11320
Submitted: 1 August 2011 Accepted: 9 August 2011 Published: 16 November 2011
Abstract
An investigation into the influence of oxidative conditions on the efficiency of opiate N-demethylation using iron powder has been carried out under non-classical Polonovski conditions. This approach involves a two-step process of N-oxidation and subsequent treatment of the intermediate N-oxide hydrochloride with the redox catalyst. Significant improvements in rate and yield have been realized for these reactions in the presence of molecular oxygen. In this context, further rate enhancement was achieved by the judicious addition of small amounts of ferric ions, leading to a concomitant reduction in the amount of the zero-valent iron primary catalyst that is required. This has led to a generalized improved methodology for the N-demethylation of oripavine, codeine, morphine, and thebaine. This protocol can also be carried out in one-pot without the need to isolate the intermediate N-oxide.
References
[1] S. Berényi, C. Csutorás, A. Sipos, Curr. Med. Chem. 2009, 16, 3215.| Crossref | GoogleScholarGoogle Scholar |
[2] D. S. Fries, in Foye’s Principles of Medicinal Chemistry, (5th ed., Eds D. A. Williams, T. L. Lemke), 2002, pp. 453–479 (Lippincott William & Wilkins: Philadelphia).
[3] S. Thavaneswaran, K. McCamley, P. J. Scammells, Nat. Prod. Commun. 2006, 1, 885.
| 1:CAS:528:DC%2BD2sXit1eltA%3D%3D&md5=c23dc256a3bf48caed229c11f5c0f85dCAS |
[4] J. von Braun, Ber. Dtsch. Chem. Ges. 1900, 33, 1438.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaD28XhtVSju7s%3D&md5=e1262c748228993ff28791f869344cc4CAS |
[5] (a) See for example: C. Csutorás, A. Zhang, J. M. Bidlack, J. L. Neumeyer, Bioorg. Med. Chem. 2004, 12, 2687.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. Kraiss, K. Nador, Tetrahedron Lett. 1971, 12, 57.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. H. Cooley, E. J. Evain, Synthesis 1989, 1.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. M. Abdel-Monem, P. S. Portoghese, J. Med. Chem. 1972, 15, 208.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. A. Olofson, J. T. Martz, J. P. Senet, M. Piteau, T. Malfroot, J. Org. Chem. 1984, 49, 2081.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) See for example: L. S. Schwab, J. Med. Chem. 1980, 23, 698.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktF2isrw%3D&md5=43dd2098b369a82f8d06f7e982201e32CAS |
(b) H. Merz, K.-H. Pook, Tetrahedron 1970, 26, 1727.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. A. Ripper, E. R. T. Tiekink, P. J. Scammells, Bioorg. Med. Chem. Lett. 2001, 11, 443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslOgurY%3D&md5=16ee6c23141d4b34d83ba36386de6439CAS |
[8] (a) (a) K. Kieslich, in Microbial Transformations of Non-Steroid Cyclic Compounds, 1976, pp. 213–215 (Thieme: Stuttgart)
(b) A. Chaudhary, H. Leisch, A. Moudra, B. Allen, V. De Luca, D. P. Cox, T. Hudlicky, Collect. Czech. Chem. Commun. 2009, 74, 1179.
| Crossref | GoogleScholarGoogle Scholar |
[9] D. Grierson, Org. React. 1990, 39, 85.
| 1:CAS:528:DyaK3cXmtFSqsbk%3D&md5=22ac8796b5ecad57465f47108e31a7e0CAS |
[10] (a) K. McCamley, J. A. Ripper, R. D. Singer, P. J. Scammells, J. Org. Chem. 2003, 68, 9847.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVOitrw%3D&md5=7bfd580ad3ea96659fdbaba12a3e8c33CAS |
(b) S. Thavaneswaran, P. J. Scammells, Bioorg. Med. Chem. Lett. 2006, 16, 2868.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) Z. Dong, P. J. Scammells, J. Org. Chem. 2007, 72, 9881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWmurbO&md5=c1102741cfc6b7663effb79a92d91d60CAS |
(b) G. B. Kok, T. D. Ashton, P. J. Scammells, Adv. Synth. Catal. 2009, 351, 283.
| Crossref | GoogleScholarGoogle Scholar |
[12] G. B. Kok, P. J. Scammells, Bioorg. Med. Chem. Lett. 2010, 20, 4499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVSkt7c%3D&md5=53e8d0a2d16d2903d81b8b4c0419d051CAS |
[13] G. B. Kok, C. C. Pye, R. D. Singer, P. J. Scammells, J. Org. Chem. 2010, 75, 4806.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslCmt7Y%3D&md5=1a0dd88687794edba1c1390ed8ecc5b3CAS |
[14] G. B. Kok, P. J. Scammells, Org. Biomol. Chem. 2011, 9, 1008.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCjtbk%3D&md5=5bde03f1c9afddaab86de725717a1ad5CAS |
[15] S. A. Shchukarev, T. A. Tolmacheva, Zh. Strukt. Khim. 1968, 9, 21.
| 1:CAS:528:DyaF1cXhtFOmtrY%3D&md5=4422d674fa983cb728939dafdf2e7be1CAS |
[16] K. Fischer, W. Wilken, J. Chem. Thermodyn. 2001, 33, 1285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFyktrg%3D&md5=91947aa5f244cd0fb54e59e4d5547d0fCAS |
[17] A. K. Mindyuk, Mater. Sci. 1977, 12, 164.
| Crossref | GoogleScholarGoogle Scholar |
[18] T. C. Zhang, Y. H. Huang, Water Res. 2006, 40, 2311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFagsLw%3D&md5=c93fcd64143e3d2cc0b21398bd1fa997CAS |
[19] (a) Y. H. Huang, T. C. Zhang, P. J. Shea, S. D. Comfort, J. Environ. Qual. 2003, 32, 1306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGju74%3D&md5=3f879a4bff08ff464fb1cda99a227836CAS |
(b) T. Satapanajaru, P. J. Shea, S. D. Comfort, Y. Roh, Environ. Sci. Technol. 2003, 37, 5219.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Mishra, J. Farrell, Environ. Sci. Technol. 2005, 39, 645.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. H. Huang, T. C. Zhang, Water Res. 2005, 39, 1751.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1agsbg%3D&md5=28ce76ff35c84716221d163239838137CAS |
[21] X. Fan, X. Guan, J. Ma, H. Al, J. Environ. Sci. 2009, 21, 1028.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2iurfK&md5=c7d4b8b75be58070dc030fcf529e6c23CAS |
[22] R. Thomas, E. T. Williams, J. Chem. Soc. Trans. 1921, 119, 749.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB3MXhsVyqtA%3D%3D&md5=3a6c5fdf12248f9b7521ad6c79cbc1a8CAS |
[23] A. B. Lamb, L. W. Elder, J. Am. Chem. Soc. 1931, 53, 137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3MXhtVOntw%3D%3D&md5=877c86b0f7f333b3dd4c89fccab964eaCAS |
[24] K. A. Kobe, W. Dickey, Ind. Eng. Chem. 1945, 37, 429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2MXhslantw%3D%3D&md5=0dfb886231973aac46dd2861f91c7192CAS |
[25] C. Baskerville, R. Stevenson, J. Am. Chem. Soc. 1911, 33, 1104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC3MXhs1egtQ%3D%3D&md5=11fcb0d52d44da01a236b73675536111CAS |
[26] J. W. McBain, J. Phys. Chem. 1901, 5, 623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaD28Xkt1Kj&md5=5af6d1490369c3a8127acba04af45b56CAS |
[27] W. Stumm, G. F. Lee, Ind. Eng. Chem. 1961, 53, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXnslymsQ%3D%3D&md5=117fbf589126863267a29030cc3a6d4bCAS |
[28] R. T. Lowson, Chem. Rev. 1982, 82, 461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xmt1yqt7k%3D&md5=94f706eb9ca24f1cf49a0c99eebc3107CAS |
[29] E. J. Roekens, R. E. van Grieken, Mar. Chem. 1983, 13, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlt1OqtbY%3D&md5=8a3a841cbc1d2ca8256bd5ee830d559aCAS |
[30] F. J. Millero, Geochim. Cosmochim. Acta 1985, 49, 547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtFOjtrs%3D&md5=018b14b3e651c29fc48139ebb095e7baCAS |
[31] B. Morgan, O. Lahav, Chemosphere 2007, 68, 2080.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlWqsLc%3D&md5=f9a7069e5d5efb283a4d31ec86551a45CAS |
[32] M. C. López, M. A. Gallardo, J. S. Urieta, G. C. Losa, J. Chem. Eng. Data 1987, 32, 472.
| Crossref | GoogleScholarGoogle Scholar |
[33] Y Gao, T. N. Traino, P Vouros, J. L. Neumeyer, J. Label. Compd. Radiopharm. 1988, 25, 293.
| 1:CAS:528:DyaL1cXmtFWht7g%3D&md5=95124040ca2536d3591ebb168a0a2c11CAS |
[34] J. T. M Linders, R. J. Booth, T. S. Lie, A. P. G. Kieboom, L Maat, Recl. Trav. Chim. 1989, 108, 189.
| 1:CAS:528:DyaK3cXitFWktQ%3D%3D&md5=2a83e9210f3c8911bdd9c8bdbe58df25CAS |
[35] K. C. Rice, J. Org. Chem. 1975, 40, 1850.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXksVemt78%3D&md5=f3d61e9cbb28501f58af2c78b4a3f058CAS |
[36] J. R. Bartels-Keith, J. Chem. Soc. C 1966, 617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XmvVSgsg%3D%3D&md5=14026ecfb811f41f196947adee69bcbeCAS |
[37] K. M. Madyastha, G. V. B. Reddy, G. R. Sridhar, Indian J. Chem. 2000, 39B, 377.
| 1:CAS:528:DC%2BD3cXnvVShs74%3D&md5=7f2d340366d0eacc02c738eae1446403CAS |