Microwave-Assisted Grafting to MCM-41 Silica and its Application as Catalyst in Flow Chemistry
Manuela Oliverio A D , Antonio Procopio A , Toma N. Glasnov B , Walter Goessler C and C. Oliver Kappe BA Dipartimento Farmacobiologico,Università Magna Graecia Viale Europa, 88100-Germaneto (Cz), Italy.
B Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University, Heinrichstrasse 28, A-8010 Graz, Austria.
C Institute for Chemistry – Analytical Chemistry, Karl-Franzens University, Universitaetsplatz 1-8010 Graz, Austria.
D Corresponding author. Email: m.oliverio@unicz.it
Australian Journal of Chemistry 64(11) 1522-1529 https://doi.org/10.1071/CH11125
Submitted: 31 March 2011 Accepted: 10 August 2011 Published: 16 November 2011
Abstract
Finding environmentally gentle methods to graft Lewis acid on the surface of mesoporous materials is a topic of current interest. Herein we describe the optimization of a preparation procedure of a mesoporous silica-supported ErIII catalyst using the microwave-assisted post-calcination functionalization of Mobil Composition of Matter-41 silica as the key step. The required time for functionalization was reduced from several hours to 10 min using sealed-vessel microwave technology. Control experiments using conventional heating at the same temperature demonstrated that the rate increase is owing to a simple thermal/kinetic effect as a result of the higher reaction temperature. The resulting ErIII catalyst was tested for the first time as a catalyst in the continuous flow deprotection of benzaldehyde dimethylacetal and a complete leaching study was performed.
References
[1] (a) J. M. Thomas, R. Raja, D. W. Lewis, Angew. Chem. Int. Ed. 2005, 44, 6456.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOqurrJ&md5=a25a25ebecf25378abd688af1d4fb701CAS |
(b) A. Corma, H. Garcìa, Chem. Rev. 2003, 103, 4307.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Soldi, W. Ferstl, S. Loebbecke, R. Maggi, C. Malmassarri, G. Sartori, S. Yada, J. Catal. 2008, 258, 289.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) A. P. Wight, M. E. Davis, Chem. Rev. 2002, 102, 3589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Wntr0%3D&md5=89aac0634e4b7659e5bed5241452bd85CAS |
(b) G. J. de A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 2002, 102, 4093.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. P. Bhatt, K. Pathak, R. V. Jasra, R. I. Kureshy, N. H. Khan, S. H. R. Abdi, J. Mol. Catal. A 2006, 244, 110.
| Crossref | GoogleScholarGoogle Scholar |
(d) X.-J. Feng, X.-B. Lu, R. He, Appl. Catal. A Gen. 2004, 272, 347.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Vicevic, K. V. K. Boodhoo, K. Scott, Chem. Eng. J. 2007, 133, 43.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) S.-E. Park, E. A. Prasetyanto, Top. Catal. 2009, 52, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVOhsrs%3D&md5=2ae1161dc3f6ac03e11ce9a9f58273baCAS |
(b) M. C. A. Fantini, J. R. Matos, L. C. C. da Silva, L. P. Mercuri, G. O. Chiereci, E. B. Celer, M. Jaroniec, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2004, 112, 106.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. L. Newalkar, H. Katsuki, S. Komarneni, Microporous Mesoporous Mater. 2004, 73, 161.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. A. Prasetyanto, S.-C. Lee, S.-M. Jeong, S.-E. Park, Chem Comm 2008, 1995.
(e) P. Liu, Z. Su, Mater. Chem. Phys. 2005, 94, 412.
| Crossref | GoogleScholarGoogle Scholar |
(f) T.-Z. Ren, Z.-Y. Yuan, B.-L. Su, Coll. Surf. A 2007, 88.
(g) Sujandi, S.-C. Han, D.-S. Han, M.-J. Jin, S.-E. Park, J. Catal. 2006, 243, 410.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) C. O. Kappe, D. Dallinger, Mol. Divers. 2009, 13, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2hsbg%3D&md5=cad04f47e63fa1899d9cf8863be14e60CAS |
(b) S. Caddick, R. Fitzmaurice, Tetrahedron 2009, 65, 3325.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) G. E. Fryxell, Inorg. Chem. Commun. 2006, 9, 1141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSgt7vI&md5=200c54dbc590653a3cb81508a2fe000cCAS |
(b) S. Padmanabhan, J. E. Coughlin, R. P. Iyer, Tetrahedron Lett. 2005, 46, 343.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. M. Kacprzak, N. M. Maier, W. Lindner, Tetrahedron Lett. 2006, 47, 8721.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) N. Garcia, E. Benito, J. Guzmàn, R. de Francisco, P. Tiemblo, Langmuir 2010, 26, 5499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1SlsA%3D%3D&md5=4a9a3ffa37687fc2c6ce022d45d76963CAS |
(b) N. Fukaya, H. Yamashita, H. Haga, T. Tsuchimoto, S. Onozawa, T. Sakakura, H. Yasuda, J. Organomet. Chem. 2011, 825.
[7] A. Procopio, G. Das, M. Nardi, M. Oliverio, L. Pasqua, ChemSusChem 2008, 1, 916.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2ls73J&md5=ddf41f6970953ec93ef021a4eb75a541CAS |
[8] A. Procopio, M. Oliverio, R. Paonessa, M. Nardi, G. De Luca, Green Chem. 2009, 11, 770.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvV2qt7s%3D&md5=1b2a65e842d9b5279e4efce6a4ecbd79CAS |
[9] (a) J. H. Clark, A. J. Butterworth, S. J. Tavener, A. J. Teasdale, J. Chem. Technol. Biotechnol. 1997, 68, 367.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFWksLg%3D&md5=74986d37e48db10f213dcaefe9d02b63CAS |
(b) D. Brunel, Microporous Mesoporous Mater. 1999, 27, 329.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Jaenicke, G. K. Chuah, X. H. Lin, X. C. Hu, Microporous Mesoporous Mater. 2000, 35–36, 143.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. R. Hilliard, X. Zhao, W. Tan, Anal. Chim. Acta 2002, 470, 51.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. H. N. Arakaki, J. G. P. Espínola, M. G. da Fonseca, S. F. de Oliveira, A. N. de Sousa, T. Arakaki, C. Airoldi, J. Colloid Interface Sci. 2004, 273, 211.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) (a) For a survey of commercially available microwave reactors, see: C. O. Kappe, D. Dallinger, S. S. Murphree, in Practical Microwave Synthesis for Organic Chemists – Strategies, Instruments, and Protocols, 2009, ch. 3, pp. 45–85 (Wiley-VCH: Weinheim).
(b) D. Obermayer, C. O. Kappe, Org. Biomol. Chem. 2010, 8, 114.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Obermayer, B. Gutmann, C. O. Kappe, Angew. Chem. Int. Ed. 2009, 48, 8321.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) M. A. Herrero, J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2008, 73, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2itLjO&md5=5a3210c96a0095d4d521fac827988cf3CAS |
(b) J. D. Moseley, P. Lenden, A. D. Thomson, J. P. Gilday, Tetrahedron Lett. 2007, 48, 6084.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. O. M. A. de Souza, O. A. C. Antunes, W. Kroutil, C. O. Kappe, J. Org. Chem. 2009, 74, 6157.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Irfan, M. Fuchs, T. N. Glasnov, C. O. Kappe, Chemistry 2009, 15, 11608.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. Hosseini, N. Stiasni, V. Barbieri, C. O. Kappe, J. Org. Chem. 2007, 72, 1417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1KltQ%3D%3D&md5=af14229d67846ef89c1933040e7f6408CAS |
[13] (a) T. Razzaq, J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2008, 73, 6321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlOmtrw%3D&md5=560402a2f6e6b42691397d074fa3e5d8CAS |
(b) J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2006, 71, 4651.
| Crossref | GoogleScholarGoogle Scholar |
[14] For a detailed description, see: C. Csajági, B. Borcsek, K. Niesz, I. Kovács, Z. Székelyhidi, Z. Bajkó, L. Ürge, F. Darvas, Org. Lett. 2008, 10, 1589.
| Crossref | GoogleScholarGoogle Scholar |
[15] R. Dalpozzo, A. De Nino, L. Maiuolo, M. Nardi, A. Procopio, A. Tagarelli, Synthesis 2004, 496.
| 1:CAS:528:DC%2BD2cXisVanurY%3D&md5=e818d4c1131abb07230adfc5bc5ce2e4CAS |
[16] (a) T. N. Glasnov, S. Findenig, C. O. Kappe, Chem. Eur. J. 2009, 15, 1001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKgtb0%3D&md5=a5ca28eba0fe18ea15e5cc6fa7e1ed89CAS |
(b) M. Fuchs, W. Goessler, C. Pilger, C. O. Kappe, Adv. Synth. Catal. 2010, 352, 323.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. Procopio, M. Gaspari, M. Nardi, M. Oliverio, R. Romeo, Tetrahedron Lett. 2008, 49, 1961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlCjs7o%3D&md5=67f2e4a906771e145df3bc7e55a56562CAS |
[18] A. Procopio, R. Dalpozzo, A. De Nino, L. Maiuolo, M. Nardi, B. Russo, Adv. Synth. Catal. 2005, 347, 1447.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFKrtLg%3D&md5=fe3ab4a41d6f3fd4c085946642c645a6CAS |
[19] The Cube product series are available from Thales Nanotechnology Inc. (Budapest, Hungary). For further information, please refer to http://www.thalesnano.com (accessed 3 March 2011).