A One-Dimensional Superstructure from the Self-Assembly of Ag Nanoparticles Induced by Cu2+ Ion Coordination
Santosh V. Nalage A , Namdev V. Ghule A , Sidhanath V. Bhosale A C and Sheshanath V. Bhosale B CA Department of Organic Chemistry, North Maharashtra University, Jalgaon 425001, India.
B School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, Vic. 3001, Australia
C Corresponding authors. Email: bsheshanath@yahoo.co.in; sidhanath2003@yahoo.co.in
Australian Journal of Chemistry 65(1) 81-85 https://doi.org/10.1071/CH11250
Submitted: 21 June 2011 Accepted: 18 October 2011 Published: 19 January 2012
Abstract
The self-assembly of spherical silver nanoparticles with variable size and controlled organization using triglycine as an organic template is described. Triglycine and silver nitrate were used as the starting materials for the preparation of the spherical nanoparticles, and in the presence of copper cations, the particles further self-assembled into one dimensional nanostructures. The formation of supramolecular nanoaggregates was evaluated by means of UV/vis, TEM, SEM, and energy dispersive X-ray spectroscopy.
References
[1] (a) N. Brack, R. Lamb, D. Pham, P. Turner, Surf. Interface Anal. 1996, 24, 704.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFGmtr0%3D&md5=717da5144606fbaa899f74f71d7cd463CAS |
(b) R. H. Bradley, I. Mathieson, K. M. Byrne, J. Mater. Chem. 1997, 7, 2477.
| Crossref | GoogleScholarGoogle Scholar |
[2] E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, Nature 1998, 391, 775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlCjsL4%3D&md5=9f8af84955669774132574280e20470aCAS |
[3] (a) Y. G. Sun, B. Gates, B. Mayers, T. Herricks, Y. N. Xia, Nano Lett. 2002, 2, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlslai&md5=5d2144d2879175932c02b17ce44fa0ceCAS |
(b) D. B. Zhang, L. M. Qi, J. H. Yang, J. M. Ma, H. M. Cheeng, L. Huang, Chem. Mater. 2004, 16, 872.
| Crossref | GoogleScholarGoogle Scholar |
[4] J. Sloan, D. M. Wright, H. Woo, G. S. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L. Hutchison, M. L. H. Green, Chem. Commun. 1999, 690.
[5] C. J. Murphy, N. R. Jana, Adv. Mater. 2002, 14, 80.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlSisQ%3D%3D&md5=c71887ae349a04d321e8f5b0995a0283CAS |
[6] L. C. Gruen, Biochim. Biophys. Acta 1975, 386, 270.
| 1:CAS:528:DyaE2MXhs1Ois7w%3D&md5=5037ad8fe250245a5a03a1b882939c59CAS |
[7] R. Alexandrova, G. Rasshkova, I. Alexandrov, W. Tsenova, R. Tudose, O. Costisor, Experim. Pathol. Parasitol. 2003, 1311, 6851.
[8] (a) K. Torigoe, Y. Nakajima, K. Esumi, J. Phys. Chem. 1993, 97, 8304.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslOmsbk%3D&md5=aaa46be376117569de2389d371e5887fCAS |
(b) M. Michaelis, A. Henglein, P. Mulvaney, J. Phys. Chem. 1994, 98, 6212.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Cazayous, C. Langlois, T. Oikawa, C. Ricolleau, A. Sacuto, Phys. Rev. B 2006, 73, 113402.
| Crossref | GoogleScholarGoogle Scholar |
[9] L. R. McDowell, Minerals in Animal and Human Nutrition, 2nd ed., 2003 (Elsevier: New York).
[10] (a) G. J. Kearns, E. W. Foster, J. E. Hutchison, Anal. Chem. 2006, 78, 298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1eisb%2FK&md5=dec578921c477aeb822dd6047f34c105CAS |
(b) A. M. Smith, H. Duan, M. N. Rhyner, G. Ruan, S. A. Nie, Phys. Chem. Chem. Phys. 2006, 8, 3895.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) M. Grzelczak, N. Kulisic, M. Prato, A. Mateo-Alonso, Chem. Commun. 2010, 46, 9122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVynurjJ&md5=42b6cd30c982db0f4939f9ad0a5242c2CAS |
(b) Y. Zhao, J.-J. Zhu, J.-M. Hong, N. Bian, H.-Y. Chen, Eur. J. Inorg. Chem. 2004, 2004, 4072.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Jin, C. Y. Charles, H. Encai, G. S. Metraux, G. C. Schatz, C. A. Mirkin, Nature 2003, 425, 487.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. Wu, G. Shi, S. Wang, P. Wu, Eur. J. Inorg. Chem. 2005, 2005, 4775.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Golberg, P. M. F. J. Costa, M. Mitome, S. Hampel, D. Haase, C. Mueller, A. Leonhardt, Y. Bando, Adv. Mater. 2007, 19, 1937.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) S. Freni, S. Cavallaro, N. Mondello, L. Spadaro, F. Frusteri, Catal. Commun. 2003, 4, 259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVGrsLw%3D&md5=6246f3b531103c9fd1ddf14c609e7444CAS |
(b) W. Wang, G. Wang, X. Wang, Y. Zhan, Y. Liu, C. Zheng, Adv. Mater. 2002, 14, 67.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Auprâtre, C. Descorme, D. Duprez, Catal. Commun. 2002, 3, 263.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Gou, C. J. Murphy, Nano Lett. 2003, 3, 231.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. Liu, F. Oba, E. W. Bohannan, F. Ernst, J. A. Switzer, Chem. Mater. 2003, 15, 4882.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. He, X. Shen, H. Gao, J. Colloid Interface Sci. 2005, 284, 510.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) S. Sengupta, D. Eavarone, I. Capila, G. L. Zhao, N. Watson, T. Kiziltepe, Nature 2005, 436, 568.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFCgs70%3D&md5=1103fd93fefaf297cd940a92dfaef3b8CAS |
(b) I. Brigger, C. Dubernet, P. Couvreur, Adv. Drug Delivery Rev. 2004, 54, 6310.
[14] (a) P. Alivisatos, Nat. Biotechnol. 2004, 22, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1el&md5=e2831c1828e95dabd6f23558f4df5cc6CAS |
(b) X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie, Nat. Biotechnol. 2004, 22, 969.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) (a) R. B. Silverstein, G. C. Bassler, Spectrometric Identification of Organic Compounds, 2nd ed. 1967, Chapter 3, p. 88 (John Wiley & Sons: New York).
(b) P. R. Selvakannan, A. Swami, D. Srisathiyanarayanan, P. S. Shirude, R. Pasricha, A. B. Mandale, M. Sastry, Langmuir 2004, 20, 18.