Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Theoretical Study of Optical and Electronic Properties of Unsymmetrical Dendritic Molecules with Different Bridge Moieties

Yanling Wang A , Qiang Peng A B D , Ying Liang A , Benlin Li A and Weiguo Zhu C
+ Author Affiliations
- Author Affiliations

A School of Chemical Engineering and Food Science, Xiangfan University, Xiangfan 441053, China.

B School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.

C Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, China.

D Corresponding author. Email: qiangpengjohnny@yahoo.com

Australian Journal of Chemistry 64(11) 1475-1484 https://doi.org/10.1071/CH11114
Submitted: 17 March 2011  Accepted: 1 July 2011   Published: 23 August 2011

Abstract

Molecules bearing polyphenylphenyl dendrons show great potential for applications in organic light-emitting diodes. In this paper, quantum-chemical calculations have been applied to investigate the structural and electronic properties of typical molecules bearing polyphenylphenyl dendrons, 2-(2′,3′,4′,5′-tetraphenyl)phenyl-5-(p-N,N-dimethyl)phenyl pyridine (A), 1-(2′,3′,4′,5′-tetraphenyl)phenyl-4-(p-N,N-dimethyl)phenyl benzene (B), 2-(2′,3′,4′,5′-tetraphenyl)phenyl-5-(p-N,N-dimethyl)phenyl thiophene (C), 1-(2′,3′,4′,5′-tetraphenyl)phenyl-2,5-dimethoxy-4-(p-N,N-dimethyl)phenyl benzene (D), and 2-(2′,3′,4′,5′-tetraphenyl)phenyl-5-(p-N,N-dimethyl)phenyl furan (E). The geometrical and electronic structures in the ground state and lowest singlet excited states have been optimized by B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) methods, respectively. The important parameters, including ionization potential (IP), electron affinity, the reorganization energies (λ), hole extraction potential, and electron extraction potential, first lowest singlet excitation energies, maximum absorption and emission wavelengths are also systematically investigated. The result implied that the HOMO, energy gaps, and IP are affected by the central aromatic ring in the order of phenylene>pyrryl> 2,5-dimethoxyphenylene>thienyl>furyl. The solvent effects on absorption and emission spectra were further examined using the polarizable continuum model.


References

[1]  C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  C. J. Tonzola, A. P. Kulkarni, A. P. Gifford, W. Kaminsky, S. A. Jenekhe, Adv. Funct. Mater. 2007, 17, 863.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. Y. Lo, C. Zhen, M. Lauters, G. E. Jabbour, A. Sellinger, J. Am. Chem. Soc. 2007, 129, 5808.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  G. Leisung, S. Tasch, C. Brandstätter, F. Meghdadi, G. Froyer, L. Athouel, Adv. Mater. 1997, 9, 33.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  H. Furumoto, H. Ceccon, IEEE J. Quantum Electron. 1970, 6, 262.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  W. C. Wu, C. L. Liu, W. C. Chen, Polymer 2006, 47, 527.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  A. J. Banister, I. B. Gorrell, Adv. Mater. 1998, 10, 1415.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  H. Weiss, S. Steiger, S. Jüngling, A. V. Yakimansky, A. H. E. Müller, Macromolecules 2003, 36, 3374.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. Mushrush, A. Facchetti, M. Lefenfeld, H. E. Katz, T. J. Marks, J. Am. Chem. Soc. 2003, 125, 9414.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  H. D. Burrows, J. Seixas de Melo, C. Serpa, L. G. Arnaut, M. da G. Miguel, A. P. Monkman, I. Hamblett, S. Navaratnam, Chem. Phys. 2002, 285, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  T. Yamamoto, Y. Fujiwara, H. Fukumoto, Y. Nakamura, S. Y. Koshihara, T. Ishikawa, Polymer 2003, 44, 4487.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  C Huang, C. G. Zhen, S. P. Su, K. P. Loh, Z. K. Chen, Org. Lett. 2005, 7, 391.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  P. Geerlings, F. D. Proft, W. Langenaeker, Chem. Rev. 2003, 103, 1793.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. D. Becke, J. Chem. Phys. 1996, 104, 1040.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  X. Ouyang, H. Zeng, J. Mol. Struct. Theochem. 2010, 945, 71.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  L. M. Liu, X. Y. Wang, Y. L. Wang, X. Y. Peng, J. Mol. Struct. Theochem. 2008, 868, 82.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  P. Poolmee, M. Ehara, S. Hannongbua, H. Nakatsuji, Polymer 2005, 46, 6474.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  A. D. Becke, Phys. Rev. A 1988, 38, 3098.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09, Revision A.02, 2009 (Gaussian, Inc., Wallingford CT).

[23]  M. A. De Oliveira, H. Duarte, J. Pernaut, W. B. De Almeida, J. Phys. Chem. A 2000, 104, 8256.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  G. R. Hutchison, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 2339.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  R. A. Marcus, N. Sutin, Biochim. Biophys. Acta 1985, 811, 265.

[26]  R. A. Marcus, J. Electroanal. Chem. 2000, 483, 2.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  V. Coropceanu, N. E. Gruhn, S. Barlow, C. Lambert, J. C. Durivage, T. G. Bill, G. Nöll, S. R. Marder, J. L. Brédas, J. Am. Chem. Soc. 2004, 126, 2727.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  S. F. Nelsen, F. Blomgren, J. Org. Chem. 2001, 66, 6551.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. Cornil, D. P. Beljonne, J. Calbert, J. L. Brédas, Adv. Mater. 2001, 13, 1053.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J. L. Brédas, Chem. Rev. 2007, 107, 926.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  M. S. Deleuze, J. Phys. Chem. A 2004, 108, 9244.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  M. S. Deleuze, Chem. Phys. 2006, 329, 22.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  A. Dreuw, J. L. Weisman, M. Head-Gordon, J. Chem. Phys. 2003, 119, 2943.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  S. D. Peyerimhoff, P. Schleyer, R. Von, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer, P. R. Schreiners, The Encyclopedia of Computational Chemistry 1998, pp. 2646–2664. (Wiley-VCH: Weinheim) 10.1002/0470845015