Modulations of Starch Structure with Potential to Influence Health1
Donald B. Thompson AA Department of Food Science, Penn State University, University Park, PA 16802, USA. Email: dbt1@psu.edu
Australian Journal of Chemistry 64(11) 1485-1487 https://doi.org/10.1071/CH11086
Submitted: 23 February 2011 Accepted: 6 July 2011 Published: 16 November 2011
Abstract
Starch is typically a mixture of essentially linear amylose and highly branched amylopectin. The difference is in the nature of the covalent bonding, with multiple branch points emanating from 1–6 glycosidic linkages of amylopectin. Equally important as the chemical structure is the physical structure: single helices and double helices exist and may be the basis for crystallinity. Starch chemical structure has been modulated through breeding: high-amylose maize starch is well studied with respect to its potential to influence health. Its altered chemical structure leads to differences in the physical structure as well. Physical treatments can also lead to altered physical structure. Modulation of chemical and/or physical structures may influence health by altering the rate and extent of starch digestion in the small intestine. Undigested starch (resistant starch) reaches the large intestine where it is fermented to potentially beneficial microbial by-products that are absorbed there.
References
[1] D. J. Manners, Carbohydr. Polym. 1989, 11, 87.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsFChsbw%3D&md5=e6f6c0e7ee2ba9e2d715692ef0b74e16CAS |
[2] D. B. Thompson, Carbohydr. Polym. 2000, 43, 223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVegtr0%3D&md5=1fae634ede5811765a46cd8a02c423b1CAS |
[3] H. F. Zobel, Starch/Starke 1988, 40, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtFCmtLk%3D&md5=63743f5e3f6753702989ce0c850a8b5bCAS |
[4] D. French, Denpun Kagaku 1972, 8.
| 1:CAS:528:DyaE2MXmtVeltA%3D%3D&md5=bd65574fb68bf9cf285ea5737e9e0140CAS |
[5] E. B. Sanders, D. B. Thompson, C. D. Boyer, Cereal Chemistry 1990, 67, 594.
| 1:CAS:528:DyaK3MXhvVeqtL8%3D&md5=525237fc5872effa276e11836c39e126CAS |
[6] C.-K. R. Yuan, D. B. Thompson, C. D. Boyer, Cereal Chemistry 1993, 70, 81.
| 1:CAS:528:DyaK3sXitFWlsrs%3D&md5=4c9ddf761f7f6a093ca8c3cc0886290bCAS |
[7] J. D. Klucinec, D. B. Thompson, Cereal Chemistry 2002, 79, 24.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFSrtQ%3D%3D&md5=030038c6638562f29f1675b541096bfdCAS |
[8] H. Xia, D. B. Thompson, Cereal Chemistry 2006, 83, 668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqtrnM&md5=f2a90ba1081e8261c66a66329b447c40CAS |
[9] M. J. Gidley, D. Cooke, A. H. Darke, R. A. Hoffmann, A. L. Russell, P. Greenwell, Carbohydr. Polym. 1995, 28, 23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvF2gsg%3D%3D&md5=93ff1d67b1c71c4ecebb45640152a29eCAS |
[10] R. P. Bear, M. L. Vineyard, M. M. MacMasters, W. L. Deatherage, Agron. J. 1958, 50, 598.
| Crossref | GoogleScholarGoogle Scholar |
[11] R. M. Sandstedt, D. Strahan, S. Ueda, R. C. Abbot, Cereal Chemistry 1962, 39, 123.
| 1:CAS:528:DyaF38Xkt1Gis7Y%3D&md5=2232c0af6bb528451a00b3b426e6d36aCAS |
[12] S.-H. Yun, N. K. Matheson, Carbohydr. Res. 1993, 243, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXnvFOqtw%3D%3D&md5=51a9ab409415eb0f761e070c216c42aeCAS |
[13] J. D. Klucinec, D. B. Thompson, Cereal Chemistry 2002, 79, 19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFSrtA%3D%3D&md5=41b9c85b93a9b3f8809b58849fd12645CAS |
[14] Y. Yao, D. B. Thompson, M. G. Guiltinan, Plant Physiol. 2004, 136, 3515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCjsbfM&md5=683a30f509899cc390fdaec1a118af1fCAS |
[15] J.-H. Li, M. J. Guiltinan, D. B. Thompson, Carbohydr. Res. 2007, 342, 2619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Oqs7nJ&md5=bbbc12beb9bf7e1de552a6913eb407ebCAS |
[16] X. Xia, “Structure and function of endosperm starch from maize mutants deficient in one or more starch-branching enzyme isoform activities”, Ph.D. Thesis, Penn State University, 2009.
[17] FAO Carbohydrates in Human Nutrition Report of a Joint FAO/WHO Expert Consultation. Food and Nutrition Paper 66, 1997 (FAO: Rome).
[18] Dietary Guidelines Advisory Committee 2010, Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2010. Available online at http://www.cnpp.usda.gov/DGAs2010-DGACReport.htm.
[19] H. N. Englyst, H. S. Wiggins, J. H. Cummings, Analyst 1982, 107, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksFCjtbk%3D&md5=ffba16d95b2cba01e31fc0bfe8f9488fCAS |
[20] D. B. Thompson, in Functional Food Carbohydrates, (Eds C. G. Biliaderis, M. Izydorczyk) 2007, pp. 73–95 (Taylor and Francis: Boca Raton, FL).
[21] H. N. Englyst, S. M. Kingman, J. H. Cummings, Eur. J. Clin. Nutr. 1992, 46, S33.
[22] J. G. Smith, J. B. German, Food Technol. 1995, 11, 87.
[23] D. L. Topping, P. M. Clifton, Physiol. Rev. 2001, 81, 1031.
| 1:CAS:528:DC%2BD3MXlt1Ohsr4%3D&md5=fdb8c2a2721195b3a3d73962d3c0da7eCAS |
[24] A. R. Bird, I. L. Brown, D. L. Topping, Curr. Issues Intest. Microbiol. 2000, 1, 25.
| 1:CAS:528:DC%2BD3cXisFWls78%3D&md5=f93fb38897b6a30d1d1118107132c933CAS |
[25] A. R. Bird, M. Vuaran, I. L. Brown, D. L. Topping, Br. J. Nutr. 2007, 97, 134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFGktrY%3D&md5=3953cd19b902f13135234c9edbb4ba2bCAS |
[26] S. E. Pryde, S. H. Duncan, G. L. Hold, C. S. Stewart, H. J. Flint, FEMS Microbiol. Lett. 2002, 217, 133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlCqs7g%3D&md5=ad15e06621a0179d63d2eaf678294d2cCAS |
[27] G. R. Gibson, M. B. Roberfroid, J. Nutr. 1995, 125, 1401.
| 1:CAS:528:DyaK2MXmt1ajsrY%3D&md5=d284da6994f404df149f7be6ac2809dfCAS |
[28] I. L. Brown, X. Wang, D. L. Topping, M. J. Playbe, P. L. Conway, Food Aust. 1998, 50, 603.
[29] D. L. Topping, M. Fukushima, A. R. Bird, Proc. Nutr. Soc. 2003, 62, 171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslyhur4%3D&md5=c865c6f3424b15730a4eb63e8b5bc7cdCAS |
[30] D. B. Thompson, Trends Food Sci. Technol. 2000, 11, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1Wgu7s%3D&md5=e387f423365ceaca0741094c266f65d9CAS |
[31] H. N. Englyst, S. M. Kingman, G. J. Hudson, J. H. Cummings, Br. J. Nutr. 1996, 75, 749.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFejt7k%3D&md5=710ab7286b44d1f29092415957b7cb26CAS |
[32] B. V. McCleary, D. A. Monaghan, J. AOAC Int. 2002, 85, 665.
| 1:CAS:528:DC%2BD38XksFWltr0%3D&md5=a7e16736642d973363cf27d539c303a4CAS |
[33] J. Brumovsky, D. B. Thompson, Cereal Chemistry 2001, 78, 680.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosVKmt70%3D&md5=be526318bad4b1aeb9545c3d6ec15d79CAS |
[34] A. Evans, D. B. Thompson, Cereal Chemistry 2008, 85, 480.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFaks7c%3D&md5=18a86d9246f525c0294a04ec50e300e6CAS |
[35] D. Saibene, “Resistant starch from novel RS-containing preparations. Residual susceptibility to amylolysis and growth of bifidobacterium strains”, Ph.D. Thesis, Penn State University, 2010.
[36] H. Jacobs, J. A. Delcour, J. Agric. Food Chem. 1998, 46, 2895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslGqtrY%3D&md5=fe721f4dca5b28f9137c8b28317be842CAS |
[37] D. L. Topping, B. H. Bajka, A. R. Bird, J. M. Clarke, L. Cobiac, M. A. Conlon, M. K. Morell, S. Toden, Microb. Ecol. Health Dis. 2008, 20, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOktbrM&md5=aee7d5a4c6796f935b6d25e5de9b02bdCAS |