Synthesis of 2,3-Dihydro-4(1H)-quinolones and the Corresponding 4(1H)-Quinolones via Low-Temperature Fries Rearrangement of N-Arylazetidin-2-ones*
Jens Lange A , Alex C. Bissember A , Martin G. Banwell A B and Ian A. Cade AA Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia.
B Corresponding author. Email: mgb@rsc.anu.edu.au
Australian Journal of Chemistry 64(4) 454-470 https://doi.org/10.1071/CH10465
Submitted: 20 December 2010 Accepted: 24 January 2011 Published: 18 April 2011
Abstract
N-Arylazetidin-2-ones of the general form 1, which are readily prepared by Goldberg–Buchwald-type copper-catalyzed coupling of N-unsubstituted azetidin-2-ones with the relevant aryl halide or using Mitsunobu cyclization processes, undergo smooth Fries-rearrangement in triflic acid at 0–18°C to give the isomeric 2,3-dihydro-4(1H)-quinolones (2). Dehydrogenation of the latter compounds using 10% Pd on C in 1.0 M aqueous sodium hydroxide/propan-2-ol mixtures at ca. 82°C provides the corresponding 4(1H)-quinolones (3).
References
[1] H. Huse, M. Whiteley, Chem. Rev. 2011, 111, 152.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSju77F&md5=a9ce6ddb55ed803079d315c4b42d9f62CAS | 20701272PubMed |
[2] See, for example: S. Yin, G. M. Boyle, A. R. Carroll, M. Kotiw, J. Dearnaley, R. J. Quinn, R. A. Davis, J. Nat. Prod. 2010, 73, 1586.
[3] L. A. Mitscher, Chem. Rev. 2005, 105, 559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsValuw%3D%3D&md5=4637fcf8f0f6782c22f87589ccdceef4CAS | 15700957PubMed |
[4] D. Edmont, R. Rocher, C. Plisson, J. Chenault, Bioorg. Med. Chem. Lett. 2000, 10, 1831.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1Grurc%3D&md5=04336b7c81bce1dcbc72234ed1fd8093CAS | 10969979PubMed |
[5] (a) Y. Xia, Z.-Y. Yang, P. Xia, K. F. Bastow, Y. Nakanishi, P. Nampoothiri, E. Hamel, A. Brossi, K.-H. Lee, Bioorg. Med. Chem. Lett. 2003, 13, 2891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFajurg%3D&md5=af34356fd683dc8eb55d77639862ae3eCAS | 14611851PubMed |
(b) S. Nakamura, M. Kozuka, K. F. Bastow, H. Tokuda, H. Nishino, M. Suzuki, J. Tatsuzaki, S. L. Morris Natschke, S.-C. Kuo, K.-H. Lee, Bioorg. Med. Chem. 2005, 13, 4396.
| Crossref | GoogleScholarGoogle Scholar |
[6] B. d’A Lucero, C. R. B. Gomes, I. C. de P. P. Frugulhetti, L. V. Faro, L. Alvarenga, M. C. B. V. de Souza, T. M. L. de Souza, V. F. Ferreira, Bioorg. Med. Chem. Lett. 2006, 16, 1010.
| Crossref | GoogleScholarGoogle Scholar | 16321530PubMed |
[7] (a) Y. Xia, Z.-Y. Yang, P. Xia, K. F. Bastow, Y. Tachibana, S.-C. Kuo, E. Hamel, T. Hackl, K.-H. Lee, J. Med. Chem. 1998, 41, 1155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs12ksLc%3D&md5=aa0c3298cf0c951e145af5b3b7e7105cCAS | 9544215PubMed |
(b) S.-X. Zhang, J. Feng, S.-C. Kuo, A. Brossi, E. Hamel, A. Tropsha, K.-H. Lee, J. Med. Chem. 2000, 43, 167.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. Mai, D. Rotili, D. Tarantino, A. Nebbioso, S. Castellano, G. Sbardella, M. Tini, L. Altucci, Bioorg. Med. Chem. Lett. 2009, 19, 1132.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1WrtLo%3D&md5=5bcee6929b4f1e5db93e88003b534d7bCAS | 19144517PubMed |
[9] See, for example: J.-C. Brouet, S. Gu, N. P. Peet, J. D. Williams, Synth. Commun. 2009, 39, 1563 and references cited therein.
[10] See, for example: D. Zewge, C.-y. Chen, C. Deer, P. D. Dormer, D. L. Hughes, J. Org. Chem. 2007, 72, 4276 and references cited therein.
[11] (a) J. A. Nieman, M. D. Ennis, J. Org. Chem. 2001, 66, 2175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFymt7g%3D&md5=f4c987bf7586b6e923b3c5a32a9184f9CAS | 11300921PubMed |
(b) S. Choi, K. Jung, J. Ryu, Arch. Pharm. Res. 2006, 29, 369.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Solé, O. Serrano, J. Org. Chem. 2008, 73, 9372.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) R. Shintani, T. Yamagami, T. Kimura, T. Hayashi, Org. Lett. 2005, 7, 5317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVylsbzF&md5=45ce0be048b762ff23cd656ae51ac411CAS | 16268567PubMed |
(b) B.-L. Lei, C.-H. Ding, X.-F. Yang, X.-L. Wan, X.-L. Hou, J. Am. Chem. Soc. 2009, 131, 18250.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) N. G. Kundu, J. S. Mahanty, P. Das, B. Das, Tetrahedron Lett. 1993, 34, 1625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksV2hsro%3D&md5=1dc25f5bb12e7d8778352169d808ed7aCAS |
(b) Z. Feng, Q.-L. Xu, L.-X. Dai, S.-L. You, Heterocycles 2010, 80, 765.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Liu, Y. Lu, Org. Lett. 2010, 12, 5592.
| Crossref | GoogleScholarGoogle Scholar |
[14] D. Cheng, J. Zhou, E. Saiah, G. Beaton, Org. Lett. 2002, 4, 4411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVSnsbs%3D&md5=39e35b5d97eeac6182e450da2f604c97CAS | 12465900PubMed |
[15] L. Kürti, B. Czakó, Strategic Applications of Named Reactions in Organic Synthesis 2005, pp. 180–181 (Elsevier Academic Press: Burlington, MA) and references cited therein.
[16] (a) S. Kano, T. Ebata, S. Shibuya, J. Chem. Soc., Perkins Trans. 1 1980, 2105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkslSquw%3D%3D&md5=2da2c6e8623a00e4097b5076219bb7f7CAS |
(b) K. W. Anderson, J. J. Tepe, Tetrahedron 2002, 58, 8475.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. Klapars, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 7421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFagt70%3D&md5=18365770793c4b66d17a6b4f21383730CAS | 12071751PubMed |
[18] For examples of such cyclizations see: A. Brandi, S. Cicchi, F. M. Cordero, Chem. Rev. 2008, 108, 3988 and references cited therein.
[19] For a useful discussion of the spectroscopic properties of azetidin-2-ones see: G. S. Singh, T. Pheko, Spectrochim. Acta [A] 2008, 70, 595.
[20] M. Kunishima, C. Kawachi, J. Morita, K. Terao, F. Iwasaki, S. Tani, Tetrahedron 1999, 55, 13159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntV2qtb0%3D&md5=6d2a6dd4dcb3aac837fe3d915b875811CAS |
[21] See, for example: J. H. Kim, H. J. Yoon, W. K. Chae, Bull. Korean Chem. Soc. 2004, 25, 1447.
[22] D. Sharma, P. Ranjan, O. Prakash, Synth. Commun. 2009, 39, 596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSgsLc%3D&md5=f5c8d90ddf084d6f4548176e8344d7c2CAS |
[23] E. Mochida, A. Uemura, K. Kato, H. Tokunaga, A. Haga, Eur. Patent. E 1987, A1, 0243982.
[24] For useful discussions of the spectral properties of 4(1H)-quinolones and related species see: (a) A. R. Katritzky, J. Ellison, J. Frank, P. Rákóczy, L. Radics, E. Gács-Baitz, Org. Mag. Res. 1981, 16, 280.
(b) V. V. Ramana Rao, C. Wentrup, J. Chem. Soc., Perkins Trans. 1 2002, 1232.
[25] For a discussion of the tautomeric interconversion and relative stabilities of certain 4(1H)-quinolones and the corresponding 4-hydroxyquinolines see: T. Rahn, B. Appel, W. Baumann, H. Jiao, A. Börner, C. Fischer, P. Langer, Org. Biomol. Chem. 2009, 7, 1931.
[26] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXksF2hu7s%3D&md5=24a69ef21241d048bc4aca249cba17c1CAS |
[27] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVerur0%3D&md5=05809750f95f7ceef0c71d9fa323e35bCAS |
[28] M. S. Manhas, S. J. Jeng, J. Org. Chem. 1967, 32, 1246.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXkvVajsL0%3D&md5=bb24d72342edcf8082635e8d9e149ab2CAS | 6042154PubMed |
[29] G. M. Blackburn, J. D. Plackett, J. Chem. Soc., Perkin Trans. 2 1972, 1366.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XkvVOnsro%3D&md5=6364841d33d2a49319fc3d8aa97440ebCAS |
[30] M. J. Meegan, B. G. Fleming, O. M. Walsh, J. Chem. Res. (S) 1991, 156.
| 1:CAS:528:DyaK3MXkslWhur8%3D&md5=029f958a5bde9718515348a0252bcf17CAS |
[31] B. Alcaide, M. F. Aly, M. A. Sierra, J. Org. Chem. 1996, 61, 8819.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVGlsb4%3D&md5=ab0427382c5a345309e32e2b2f6d7160CAS | 11667860PubMed |
[32] A. R. Katritzky, N. Shobana, P. A. Harris, Tetrahedron Lett. 1990, 31, 3999.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtFWlt78%3D&md5=9b0b226e4cde51616ec535c2c0a469e5CAS |
[33] J. R. Merchant, D. S. Chothia, J. Chem. Soc., Perkin Trans. 1 1972, 932.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhsVSnt7c%3D&md5=c27f26da902b67d9034ee608a65d9a90CAS |
[34] G. Bradley, J. Clark, W. Kernick, J. Chem. Soc., Perkin Trans. 1 1972, 2019.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltVWgt7c%3D&md5=8c7290012c5eef692a08f8e249c4051fCAS |
[35] M. S. Atwal, L. Bauer, S. N. Dixit, J. E. Gearien, R. W. Morris, J. Med. Chem. 1965, 8, 566.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXks1aqsL4%3D&md5=5306ea78845dc846d632399f897de89aCAS |
[36] B. Riegel, C. J. Albisetti,, G. R. Lappin, R. H. Baker, J. Am. Chem. Soc. 1946, 68, 2685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2sXotVWm&md5=62d62882c542be16933d2ce7289cfc3eCAS |
[37] H. Briehl, A. Lukosch, C. Wentrup, J. Org. Chem. 1984, 49, 2772.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltlSltrw%3D&md5=bd34dbfddf9f6f7ad5f2d4aa46eac3deCAS |
[38] L. Hill, S. H. Imam, H. McNab, W. J. O’Neill, Synlett 2009, 1847.
| 1:CAS:528:DC%2BD1MXpsV2qtrY%3D&md5=ebf39a485fd0887791d454a354d80831CAS |
[39] DENZO–SMN, Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in oscillation mode, in Methods in Enzymology, Volume 276: Macromolecular Crystallography, Part A (Eds C. W. Carter, Jr., R. M. Sweet) 1997, pp. 307–326 (Academic Press: New York, NY).
[40] SIR92, A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 1994, 27, 435.
[41] P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Cryst. 2003, 36, 1487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFekt78%3D&md5=a776b3d247a9f9983242c1640a0925edCAS |