Studies Directed Towards the Preparation of Probes for the Photoaffinity Labelling of Gibberellin Receptors †
James R. Crow A , Peter M. Chandler B and Lewis N. Mander A CA Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
B CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
C Corresponding author. Email: mander@rsc.anu.edu.au
Australian Journal of Chemistry 64(4) 471-488 https://doi.org/10.1071/CH10441
Submitted: 3 December 2010 Accepted: 17 February 2011 Published: 18 April 2011
Abstract
Model studies for the preparation of photoaffinity probes designed to explore the nature of gibberellin receptor sites have provided a wide range of gibberellin derivatives that should afford useful scaffolds incorporating auxiliary groups attached to C-2 and C-12. Methodology features the stereocontrolled opening of 2β,3β-epoxy gibberellins by attack on the lower face at C-2, while functionalization of C-12 was effected by the rhodium acetate-catalyzed CH insertion reaction of a 17-diazo ketone. Compounds were screened for bioactivity in growth and barley endosperm-based bioassays.
References
[1] M. Ueguchi-Tanaka, M. Ahikari, M. Nakajima, H. Itoh, E. Katoh, M. Kobayashi, T.-Y. Chow, C. Hsing, H. Kitano, I. Yamaguchi, M. Matsuoka, Nature 2005, 437, 693.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsL%2FP&md5=a357cf4843bef7f98346e9314ec08b44CAS | 16193045PubMed |
[2] M. Nakajima, A. Shimada, Y. Takashi, Y. C. Kim, S. H. Park, M. Ueguchi-Tanaka, H. Suzuki, E. Katoh, S. Iuchi, M. Kobayashi, T. Maeda, M. Matsuoka, I. Yamaguchi, Plant J. 2006, 46, 880.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVWqurY%3D&md5=9b22d2b89f00a8d3a2c28af5f0d31413CAS | 16709201PubMed |
[3] R. Hooley, M. H. Beale, S. J. Smith, Planta 1991, 183, 274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtFymurg%3D&md5=611d192e9f83ccbf77fd3fabfcb1efcbCAS |
[4] R. Hooley, Plant Mol. Biol. 1994, 26, 1529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFeksrk%3D&md5=bda1df241dd3de2a6bba3a83e01df01cCAS | 7858203PubMed |
[5] S. Gilroy, R. L. Jones, Plant Physiol. 1994, 104, 1185.
| 1:CAS:528:DyaK2cXjtF2mtL0%3D&md5=024faf78fbb283713934f3fecfca7702CAS | 12232156PubMed |
[6] P. M. Chandler, C. A. Harding, A. R. Ashton, M. D. Mulcair, N. E. Dixon, L. N. Mander, Molecular Plant 2008, 1, 285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslyks7g%3D&md5=42e34a01c9e5204068689f50c127cb51CAS | 19825540PubMed |
[7] S. A. Fleming, Tetrahedron 1995, 51, 12479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVyrsr4%3D&md5=c66dd53fbc30c44dd6b8c33b8c16371fCAS |
[8] M. H. Beale, R. Hooley, M. J. Lewis, S. J. Smith, J. L. Ward, J. Chem. Soc., Perkin Trans. 1 1995, 657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslWlu70%3D&md5=1125d85cc72f20a55512313a10e85e8fCAS |
[9] R. Hooley, M. H. Beale, Planta 1991, 183, 274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtFymurg%3D&md5=611d192e9f83ccbf77fd3fabfcb1efcbCAS |
[10] M. Nassal, J. Am. Chem. Soc. 1984, 106, 7540.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtlWjs7o%3D&md5=3d3ad5761d2abcd06107f6b9f1ea3c41CAS |
[11] Y. Hatanaka, H. Hashimoto, H. Kurihara, H. Nakayama, Y. Kanaoka, J. Org. Chem. 1994, 59, 383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVCktLg%3D&md5=1af80512dc338b391fd2a57cac2eb17dCAS |
[12] M. Hashimoto, Y. Kanaoka, Y. Hatanaka, Heterocycles 1997, 46, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFSrsr4%3D&md5=e5f0b9eae5e67a5f2361e8eb3cc32cc1CAS |
[13] T. Weber, J. Brunner, J. Am. Chem. Soc. 1995, 117, 3084.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktlekurg%3D&md5=aa24da620d93c2c1eb62faec2b883004CAS |
[14] L. N. Mander, Chem. Rev. 1992, 92, 573.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVyhsrg%3D&md5=df7d0fcd34d33fc26c916fcba90c672eCAS |
[15] M. J. McDonough, P. M. Chandler, unpublished results.
[16] P. M. Chandler, M. Robertson, Plant Physiol. 1999, 120, 623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFWqs7Y%3D&md5=1db8f3fad63d70f031aeff917f775198CAS | 10364415PubMed |
[17] L. N. Mander, J. V. Turner, Tetrahedron Lett. 1981, 22, 4149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xht1ejsLw%3D&md5=da0c1011950ddc5fc647c5b633d32617CAS |
[18] D. Yang, M. K. Wong, Y. C. Yip, J. Org. Chem. 1995, 60, 3887.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFWqsrg%3D&md5=641e7059bf3bd37bd86aef582b7f1c26CAS |
[19] 1H NMR spectra of the 2α,3α-diastereomer agree with those reported by L. J. Beely, J. MacMillan, J. Chem. Soc. Perkin 1976, 1, 1022.
[20] S. Chandrasekhar, Ch. Raji Reddy, B. Nagendra Babu, G. Chandrashekar, Tetrahedron Lett. 2002, 43, 3801.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjtlyjsbg%3D&md5=67248de40921f3d402fa6cfe2f625d40CAS |
[21] P. A. Bartlett, W. S. Johnson, Tetrahedron Lett. 1970, 51, 4459.
| Crossref | GoogleScholarGoogle Scholar |
[22] L. Lombardo, L. N. Mander, J. V. Turner, J. Am. Chem. Soc. 1980, 102, 6626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkslGgsQ%3D%3D&md5=670fb54bf31583d41e4e334c7e4002f2CAS |
[23] P. S. Kirkwood, J. MacMillan, M. Hutchison, J. Chem. Soc. Perkin 1982, 1, 707.
| Crossref | GoogleScholarGoogle Scholar |
[24] L. N. Mander, Nat. Prod. Rep. 2003, 20, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVKls70%3D&md5=8aa232c12d42a66cc6f75d189e425efbCAS | 12636083PubMed |
[25] T. Ye, M. A. McKervey, Chem. Rev. 1994, 94, 1091.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktVyhsbY%3D&md5=e44b15b7a52e06eca3fcb28cbd7fc393CAS |
[26] P. S. Grieco, S. Gilman, M. Nishizawa, J. Org. Chem. 1976, 41, 1485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xhs1Cgsb0%3D&md5=b7ea538272457483039afca02f3076bbCAS |
[27] A. S.-H. Lee, Y.-J. Hu, S. F. Chu, Tetrahedron 2001, 57, 2121.
| Crossref | GoogleScholarGoogle Scholar |