Development of Cubosomes as a Cell-Free Biosensing Platform
Scott J. Fraser A C , Raymond M. Dawson B , Lynne J. Waddington C , Ben W. Muir C , Xavier Mulet C , Patrick G. Hartley C , Frances Separovic A and Anastasios Polyzos C D EA School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, Vic. 3010, Australia.
B DSTO Melbourne, Defence Science and Technology Organisation, PO Box 4331, Melbourne, Vic. 3001, Australia.
C CSIRO Materials Science and Engineering, Bayview Avenue, Clayton South, Vic. 3169, Australia.
D Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
E Corresponding author. Email: tash.polyzos@csiro.au
Australian Journal of Chemistry 64(1) 46-53 https://doi.org/10.1071/CH10361
Submitted: 1 October 2010 Accepted: 22 November 2010 Published: 14 January 2011
Abstract
The parallel between the lipidic microenvironments of the inverse bicontinuous cubic phase and the biological membrane distinguishes cubic phases as an attractive option for development of cell-free biosensors containing protein or glycolipid receptors. Herein we describe a novel strategy toward the creation of a biosensing platform derived from the surface attachment of a colloidally stable inverse cubic structure (cubosomes). We report the preparation of cubosomes composed of the amphiphile phytantriol, the membrane glycolipid receptor monosialoganglioside-GM1 and the biotin-functionalized amphiphile 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethyleneglycol)-2000] (bDSPE). The tethering of cubosomes to the various surfaces was mediated through bDSPE binding to streptavidin- and avidin-modified surfaces. Allylamine plasma polymer surface modification enhanced the surface immobilization of avidin, which increased the density of bound cubosomes. The resultant polymer–protein–cubosome complex was imaged by cryo-transmission electron microscopy analysis and the cubosome structure was impressively preserved within the complex. Cholera toxin binding to cubosomes containing GM1 was used to assess the performance of the cubosomes, subsequent to surface attachment, via a modified enzyme-linked immunosorbent assay. Specific immobilization of complex protein–receptor–cubosome systems paves the way for development of a structurally complex, heterogeneous platform for sensing applications.
References
[1] E. Nazaruk, R. Bilewicz, G. Lindblom, B. Lindholm-Sethson, Anal. Bioanal. Chem. 2008, 391, 1569.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFakt7s%3D&md5=e797e1d592a2accdbe67403acffd7805CAS | 18488208PubMed |
[2] R. V. Glatz, W. R. Leifert, T. H. Cooper, K. Bailey, C. S. Barton, A. S. Martin, A. L. Aloia, O. Bucco, L. Waniganayake, G. Wei, B. Raguse, L. Wieczorek, E. J. McMurchie, Aust. J. Chem. 2007, 60, 309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVSlu7g%3D&md5=dacdabfce0317cabe1fcb5cefa0396b3CAS |
[3] D. Stamou, C. Duschl, E. Delamarche, H. Vogel, Angew. Chem. Int. Ed. 2003, 42, 5580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsl2ks78%3D&md5=4babfb7c5a3a2a2c67e002a248f11a21CAS |
[4] A. Granéli, M. Edvardsson, F. Hook, ChemPhysChem 2004, 5, 729.
| Crossref | GoogleScholarGoogle Scholar | 15179728PubMed |
[5] E. T. Castellana, P. S. Cremer, Surf. Sci. Rep. 2006, 61, 429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeitLnI&md5=ff1b8f55d50092ac3ddb6f89e4989264CAS |
[6] E. Reimhult, K. Kumar, Trends Biotechnol. 2008, 26, 82.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCktbk%3D&md5=21873677171b5adcdf73b8a82201dd9cCAS | 18191259PubMed |
[7] S. M. Christensen, D. Stamou, Soft Matter 2007, 3, 828.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsF2itL4%3D&md5=214344cc07850df9792399c8961698afCAS |
[8] C. Yoshina-Ishii, S. G. Boxer, J. Am. Chem. Soc. 2003, 125, 3696.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Oqtro%3D&md5=b4ae0cb77152c8c82270368684981d51CAS | 12656589PubMed |
[9] I. W. Hamley, Soft Matter 2005, 1, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFSgu7c%3D&md5=d12aba8f644842d96c4c4a4315abe58aCAS |
[10] K. Bailey, M. Bally, W. Leifert, J. Voros, T. McMurchie, Proteomics 2009, 9, 2052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlens7Y%3D&md5=7de35fea72aacf062fee75f80a83b37eCAS | 19337994PubMed |
[11] M. R. Whorton, M. P. Bokoch, S. G. F. Rasmussen, B. Huang, R. N. Zare, B. Kobilka, R. K. Sunahara, Proc. Natl. Acad. Sci. USA 2007, 104, 7682.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslaiuro%3D&md5=cb95facbf52ce1015694b9dac10b01dbCAS |
[12] A. J. Leitz, T. H. Bayburt, A. N. Barnakov, B. A. Springer, S. G. Sligar, Biotechniques 2006, 40, 601.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVWks74%3D&md5=3f46b942964d3c8ea3e6bb1a57caf236CAS | 16708760PubMed |
[13] J. B. Li, H. Mohwald, Z. H. An, G. Lu, Soft Matter 2005, 1, 259.
| Crossref | GoogleScholarGoogle Scholar |
[14] F. Szoka, D. Papahadjopoulos, Annu. Rev. Biophys. Bioeng. 1980, 9, 467.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXks1Cqsrs%3D&md5=6899ab72c1fed427c3334c3566dd5fb1CAS | 6994593PubMed |
[15] L. E. Scriven, Nature 1976, 263, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXit1Wksg%3D%3D&md5=267fd9a30d88e791bbe7ea26e3fd3d41CAS |
[16] J. M. Seddon, Acta Pharm. 1992, 42, 255.
| 1:CAS:528:DyaK3sXitVOlt7w%3D&md5=d6301553ca65beaaca2f6daf972f1756CAS |
[17] S. Fraser, F. Separovic, A. Polyzos, Eur. Biophys. J. Biophys 2009, 39, 83.
| Crossref | GoogleScholarGoogle Scholar |
[18] T. Kaasgaard, C. J. Drummond, Phys. Chem. Chem. Phys. 2006, 8, 4957.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyit7rF&md5=83eb04125f4d7f2e39c9291c49114369CAS | 17091149PubMed |
[19] R. H. Templer, Curr. Opin. Colloid Interface Sci. 1998, 3, 255.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlGmtrg%3D&md5=78e5c1d1a08289b4fd674525295eaa14CAS |
[20] G. C. Shearman, B. J. Khoo, M. L. Motherwell, K. A. Brakke, O. Ces, C. E. Conn, J. M. Seddon, R. H. Templer, Langmuir 2007, 23, 7276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlWktrs%3D&md5=7c1320b16d6de106b7f30ff598881505CAS | 17503862PubMed |
[21] A. M. Squires, C. E. Conn, J. M. Seddon, R. H. Templer, Soft Matter 2009, 5, 4773.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVaisLnL&md5=73c4ee0894d5651b30de828240b8b1f7CAS |
[22] D. Yang, B. Armitage, S. R. Marder, Angew. Chem. Int. Ed. 2004, 43, 4402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFOgs70%3D&md5=483797f07f6f8872f8334153e4d8bdfdCAS |
[23] J. Barauskas, T. Landh, Langmuir 2003, 19, 9562.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVCru7g%3D&md5=3b9b731f6ab65fd5fc1b3937c60bc3c1CAS |
[24] N. M. Green, Biochem. J. 1963, 89, 585.
| 1:CAS:528:DyaF2cXhtVyjsQ%3D%3D&md5=29d1e39e7e3420e4cd574081c4729c05CAS | 14101979PubMed |
[25] P. M. Wolny, J. P. Spatz, R. P. Richter, Langmuir 2010, 26, 1029.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFajsrzJ&md5=91873c120ae31ab7b4ddee680abf0057CAS | 19736978PubMed |
[26] R. M. Dawson, J. Appl. Toxicol. 2005, 25, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cgt7g%3D&md5=e32a31bc6c3a6eb140bff3ce85f63bb2CAS | 15669043PubMed |
[27] A. Polyzos, M. R. Alderton, R. M. Dawson, P. G. Hartley, Bioconjug. Chem. 2007, 18, 1442.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVekt7c%3D&md5=b671524cbd0fe5dda1bf8c90ae7d859bCAS | 17715991PubMed |
[28] X. Mulet, D. F. Kennedy, C. E. Conn, A. Hawley, C. J. Drummond, Int. J. Pharm. 2010, 395, 290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2it7Y%3D&md5=3ffde219cac54cd252f6347771d781efCAS | 20580796PubMed |
[29] J. M. Seddon, A. M. Squires, C. E. Conn, O. Ces, A. J. Heron, X. Mulet, G. C. Shearman, R. H. Templer, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2006, 364, 2635.
| 1:CAS:528:DC%2BD28Xht1ymsLbL&md5=86df4f811e2abd411c8111c6d5c49977CAS |
[30] B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, P. G. Hartley, Adv. Mater. 2006, 18, 3079.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Cjuw%3D%3D&md5=5b0c4a8e857a402d609f1def68990dfeCAS |
[31] M. Adrian, J. Dubochet, J. Lepault, A. W. McDowall, Nature 1984, 308, 32.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhslSrtbY%3D&md5=10587265e9c1a0e3dc65a4db009ec3e6CAS | 6322001PubMed |
[32] P. T. Spicer, W. B. Small, M. L. Lynch, J. L. Burns, J. Nanopart. Res. 2002, 4, 297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslOjtbs%3D&md5=6f98bdf09974f2845c1ab122d7a9cba5CAS |
[33] G. Popescu, J. Barauskas, T. Nylander, F. Tiberg, Langmuir 2007, 23, 496.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WksLfJ&md5=5d273c6832eada965a853c6852214357CAS | 17209599PubMed |
[34] S. M. Sagnella, C. E. Conn, I. Krodkiewska, C. J. Drummond, Soft Matter 2009, 5, 4823.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVaisLjJ&md5=3b46b7eab78547974a59b006fd71c5a0CAS |
[35] J. N. Israelachvili, D. J. Mitchell, Biochim. Biophys. Acta 1975, 389, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhs1Khsbg%3D&md5=6d8e7efcf1fcf5987c288c09f2d15e33CAS | 1138904PubMed |
[36] X. Mulet, X. Gong, L. J. Waddington, C. J. Drummond, ACS Nano 2009, 3, 2789.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKks7bK&md5=e1cb6de7864db3cb9d3b355958feb0a1CAS | 19769405PubMed |
[37] W. H. Massover, J. Synchrotron Radiat. 2007, 14, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVOhtA%3D%3D&md5=a6f4a6c0adf1d2cd6ca1e9f82919fcc7CAS | 17211078PubMed |
[38] P. Vandoolaeghe, R. A. Campbell, A. R. Rennie, T. Nylander, J. Phys. Chem. C 2009, 113, 4483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFymtrs%3D&md5=e6fa32f66c52aef83471ee51bf2f06f5CAS |
[39] C. Neto, G. Aloisi, P. Baglioni, K. Larsson, J. Phys. Chem. B 1999, 103, 3896.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFGntLk%3D&md5=c195022b5e6384f718c1f64314408f97CAS |