Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Structure of C-type Gd2O3. A Powder Neutron Diffraction Study using Enriched 160Gd

Brendan J. Kennedy A C and Max Avdeev B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

B Bragg Institute, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234, Australia.

C Corresponding author. Email: b.kennedy@chem.usyd.edu.au

Australian Journal of Chemistry 64(1) 119-121 https://doi.org/10.1071/CH10310
Submitted: 20 August 2010  Accepted: 7 October 2010   Published: 14 January 2011

Abstract

The structure of the cubic C-type phase of Gd2O3 has been refined using high-resolution powder neutron diffraction data. The sample was enriched in 160Gd to avoid the high neutron absorption of naturally occurring Gd. The refined structure is in excellent agreement with that estimated using perturbed angular correlation spectroscopy.


References

[1]  A. Garcia-Murillo, C. Le Luyer-Urlacher, C. Dujardin, C. Pedrini, J. Mugnier, J. Sol-Gel Sci. Technol. 2003, 26, 957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFGiu78%3D&md5=e4b29dab9b20e5cbf548d7cb48dba416CAS |

[2]  M. Buijs, A. Meyerink, G. Blasse, J. Lumin. 1987, 37, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksVyltL8%3D&md5=c7a1cb1a754a0ce8964643e1f95bdac6CAS |

[3]  L. Fornasiero, E. Mix, V. Peters, K. Petermann, G. Huber, Cryst. Res. Technol. 1999, 34, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFeisLw%3D&md5=fb7d8460da12bdd6519c2604ad2fe95fCAS |

[4]  S. K. Singh, K. Kumar, S. B. Rai, Sens. Actuators A Phys. 2009, 149, 16.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  W. O. Gordon, J. A. Carter, B. M. Tissue, J. Lumin. 2004, 108, 339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFOqsLg%3D&md5=bbe584976f3241ada960795719acddc1CAS |

[6]  N. H. Menzler, F. Tietz, S. Uhlenbruck, H. P. Buchkremer, D. Stover, J. Mater. Sci. 2010, 45, 3109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVWnsLY%3D&md5=883b951d97d7e1641f0990d957523ac1CAS |

[7]  M. Zinkevich, Prog. Mater. Sci. 2007, 52, 597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlOltbk%3D&md5=d1bc34be301d25d81f4c589e7d0e4893CAS |

[8]  J. Coutures, F. Sibieude, M. Foex, J. Solid State Chem. 1976, 17, 377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xkt1Ols70%3D&md5=ec87cfca747de52d8d495362d51184faCAS |

[9]  Sammes  N., Du  Y., in Fuel Cell Technologies: State and Perspectives, Vol. 202 2005, p. 19 (Eds N. Sammes, A. Smirnova, O. Vasylyev) (Springer: Dordrecht, the Netherlands).

[10]  F. X. Zhang, M. Lang, J. W. Wang, U. Becker, R. C. Ewing, Phys. Rev. B 2008, 78, 78.

[11]  M. Matsuda, A. Kikkawa, K. Katsumata, S. Ebisu, S. Nagata, J. Phys. Soc. Jpn. 2005, 74, 1412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFCru7s%3D&md5=de1150717fc4109980f3869ce7ccbdf7CAS |

[12]  V. F. Sears, Neutron News 1992, 3, 26.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y.-L. Li, N.-F. Chen, J.-P. Zhou, S.-L. Song, L.-F. Liu, Z.-G. Yin, C.-L. Cai, J. Cryst. Growth 2004, 265, 548.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtF2qsLw%3D&md5=34029a65d577ebb426211e9d008f0220CAS |

[14]  E. E. Rodriguez, F. Poineau, A. Llobet, A. P. Sattelberger, J. Bhattacharjee, U. V. Waghmare, T. Hartmann, A. K. Cheetham, J. Am. Chem. Soc. 2007, 129, 10244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFGntrc%3D&md5=6ab90bc5889bfd0a6425f4ee8e858bdbCAS | 17655304PubMed |

[15]  B. H. O’Connor, T. M. Valentin, Acta Crystallogr. B 1969, 25, 2140.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  E. N. Maslen, V. A. Streltsov, N. Ishizawa, Acta Crystallogr. B 1996, 52, 414.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  A. Bartos, K. P. Lieb, M. Uhrmacher, D. Wiarda, Acta Crystallogr. B 1993, 49, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. Marezio, Acta Crystallogr. 1966, 20, 723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xkt1Gltbg%3D&md5=d4e13372c5e79a109612fa2f9f12fe67CAS |

[19]  S. Geller, P. Romo, J. P. Remeika, Z. Krist. 1967, 124, 136.
         | 1:CAS:528:DyaF2sXktlOisrs%3D&md5=b004bcabff2518a12fb0c5e62dc2dfd3CAS |

[20]  R. M. Moon, W. C. Koehler, H. R. Child, L. J. Raubenheimer, Phys. Rev. 1968, 176, 722.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXkt1ejtA%3D%3D&md5=96542d43581e77e2c358ff383b136cc3CAS |

[21]  K. D. Liss, B. Hunter, M. Hagen, T. Noakes, S. Kennedy, Physica B 2006, 385–386, 1010.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) B. H. Toby, J. Appl. Cryst. 2001, 34, 210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1yhsbc%3D&md5=60dd94474478331ba060e7222f9b2afeCAS |
      Larson  A. C., Von Dreele  R. B., Los Alamos National Laboratory Report LAUR 86–748 1994.