Crystal Structures and Luminescence Behaviour of d10 Metal–Organic Complexes with Multipyridine Ligands
Chunfeng Yan A B , Qihui Chen A , Lian Chen A , Rui Feng A , Xiaochen Shan A , Feilong Jiang A C and Maochun Hong A CA Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China.
B The Research Centre of Applied Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China.
C Corresponding authors. Email: fjiang@fjirsm.ac.cn; hmc@fjirsm.ac.cn
Australian Journal of Chemistry 64(1) 104-118 https://doi.org/10.1071/CH10175
Submitted: 29 April 2010 Accepted: 24 October 2010 Published: 14 January 2011
Abstract
Six d10 metal–organic complexes with multipyridine ligands, [Cd(terpy)2](NO3)2·2H2O (1), [Cd(terpy)(NO3)2(H2O)] (2), [Hg(terpy)I2] (3), [Zn(tpt)(NO3)(H2O)2]NO3 (4), [Zn2(tpt)2(4,4′-bipy)(4H2O)](NO3)4·4H2O (5), [Zn(tpt)(OAc)2]·5H2O (6) (terpy = 2,2′:6′,2′-terpyridine, tpt = 2,4,6-tri(2-pyridyl)-1,3,5-triazine, 4,4′-bipy = 4,4′-bipyridine) were synthesized and structurally characterized. The abundant hydrogen-bonding interactions extend complex 2 into ladder-like 1D chains, discrete molecules of 4 into a 2D layer structure, complex 5 into a 2D hydrogen-bonded network through linking the hydrogen-bonded ribbons with hexagonal and four-sided rings, and complex 6 into a 3D hydrogen-bonded network through combining water helical chains. Fluorescence analyses of 1–6 in the solid state are investigated at both room temperature and 10 K. The emission spectra of 1–2 show a large red shift, which is ascribed to ligand-to-ligand charge transfer combined with ligand-to-metal charge transfer, whereas emissions of 4–6 all originate from intraligand π-π* transitions. In organic solvents, 1–6 behave very differently and their emission spectra exhibit various luminescences, with an obvious blue shift indicating strong solvent effects. The X-ray diffraction and thermal gravimetric analyses for complexes 1–6 are also reported.
References
[1] S. S. Sun, A. J. Lees, Coord. Chem. Rev. 2002, 230, 171.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Ogtbs%3D&md5=1dfe2741b52f71911e5a40a963f256aaCAS |
[2] C. Janiak, J. Chem. Soc., Dalton Trans. 2003, 2781.
| 1:CAS:528:DC%2BD3sXlt1emsb4%3D&md5=d76b6fc722627bfa9ab812969850177aCAS |
[3] B. Zhao, X. Y. Chen, P. Cheng, D. Z. Liao, S. P. Yan, Z. H. Jiang, J. Am. Chem. Soc. 2004, 126, 15394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlSisrg%3D&md5=3389f0e440eca4ec55dcbfb5caae9e57CAS | 15563162PubMed |
[4] L. Han, Y. Q. Gong, D. Q. Yuan, M. C. Hong, J. Mol. Struct. 2006, 789, 128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Gmsr4%3D&md5=b794ff66120ab79bcacb29292a855b0bCAS |
[5] A. Barbieri, G. Accorsi, N. Armaroli, Chem. Commun. 2008, 2185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFOltrw%3D&md5=f7b522f1ebfeb3af5136ab5012e91f55CAS |
[6] (a) A. P. Zipp, Coord. Chem. Rev. 1988, 84, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitFGisLc%3D&md5=8e47acc2bc1014d4983a237a26f41e97CAS |
(b) V. W. W. Yam, K. K. W. Lo, Chem. Soc. Rev. 1999, 28, 323.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. D. Harvey, H. B. Gray, J. Am. Chem. Soc. 1988, 110, 2145.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. W. W. Yam, Acc. Chem. Res. 2002, 35, 555.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) M. A. Harvey, S. Baggio, M. T. Garland, R. Baggio, Aust. J. Chem. 2001, 54, 711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Cjsrs%3D&md5=83fd2a09200f6b6d2b6d5a4072a82be8CAS |
(b) A. J. Canty, G. Hayhurst, N. Chaichit, B. M. Gatehouse, J. Chem. Soc. Chem. Commun. 1980, 316.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. D. L. Saunders, N. Burford, U. Werner-Zwanziger, R. McDonald, Inorg. Chem. 2008, 47, 3693.
| Crossref | GoogleScholarGoogle Scholar |
[8] P. J. Jiang, Z. J. Guo, Coord. Chem. Rev. 2004, 248, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1yht78%3D&md5=778cdea7d9f321085faba86a09ebe982CAS |
[9] P. Carol, S. Sreejith, A. Ajayaghosh, Chem. Asian J. 2007, 2, 338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlWgtrg%3D&md5=ffbb237b62bad8c5e157b4387e6b8aeaCAS | 17441169PubMed |
[10] (a) R. C. Evans, P. Douglas, C. J. Winscom, Coord. Chem. Rev. 2006, 250, 2093.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslGms7Y%3D&md5=17b009ba861a9617e5b5efb19bc45189CAS |
(b) S. N. Wang, Coord. Chem. Rev. 2001, 215, 79.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) M. L. Główka, D. Martynowski, K. Kozłowska, J. Mol. Struct. 1999, 474, 81.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. Pan, N. W. Zheng, N. W. Wu, X. Y. Huang, J. Coord. Chem. 1999, 47, 551.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. A. Hunter, Chem. Soc. Rev. 1994, 23, 101.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. L. Główka, D. Martynowski, K. Kozłowska, J. Mol. Struct. 1999, 474, 81.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFWguw%3D%3D&md5=adf5e94e32108c937ffe16d5ad759fadCAS |
(b) G. R. Desiraju, Acc. Chem. Res. 2002, 35, 565.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Bose, J. Banerjee, Sk. H. Rahaman, G. Mostafa, H. K. Fun, R. D. Bailey Walsh, M. J. Zaworotko, B. K. Ghosh, Polyhedron 2004, 23, 2045.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) G. M. Whitesides, E. E. Simaneck, J. P. Mathias, C. T. Seto, D. N. Chin, M. Mommen, D. M. Cordon, Acc. Chem. Res. 1995, 28, 37.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtF2rs7w%3D&md5=8e02d4f34f04d9dffd242ddecb577a71CAS |
(b) J. J. Wolff, Angew. Chem. Int. Ed. Engl. 1996, 35, 2195.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. C. Wang, W. C. Lo, C. C. Chou, G. H. Lee, J. M. Chem, S. M. Peng, Inorg. Chem. 1998, 37, 4059.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. J. Shieh, C. C. Chou, G. H. Lee, J. M. Chem, S. M. Peng, Angew. Chem. Int. Ed. Engl. 1997, 36, 56.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. A. Cotton, L. M. Daniel, G. T. Jordan, C. A. Murillo, Chem. Commun. 1997, 1673.
| Crossref | GoogleScholarGoogle Scholar |
Lehn J. M., Supramolecular Chemistry, 1st edn 1995 (VCH: New York).
(g) D. Philp, J. F. Stoddart, Angew. Chem. Int. Ed. Engl. 1996, 35, 1154.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) M. Meot-ner, Chem. Rev. 2005, 105, 213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslWkug%3D%3D&md5=ebabc68a10d667c94376435b62405dceCAS | 15729772PubMed |
(b) W. S. Allison, Acc. Chem. Res. 1976, 9, 293.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. P. Zhou, X. J. Zhang, S. H. Lin, D. Li, Cryst. Growth Des. 2007, 7, 485.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) H. G. Zhu, M. Ströbele, Z. Yu, Z. Wang, H.-J. Meyer, X. Z. You, Inorg. Chem. Commun. 2001, 4, 577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntV2gs7c%3D&md5=6fee825ec7f2df22a62071b6afbde860CAS |
(b) D. Bose, S. H. Rahaman, G. Mostafa, R. D. Bailey Walsh, M. J. Zaworotko, B. K. Ghosh, Polyhedron 2004, 23, 545.
| Crossref | GoogleScholarGoogle Scholar |
[17] Catalysis from A to Z: A Concise Encyclopedia (Eds B. Cornils, W. A. Herrmann, R. Schlogl) 2000 (Wiley: New York).
[18] Farraro J. R., Williams J. M., Introduction to Synthetic Electrical Conductors 1987 (Academic Press: New York).
[19] G. W. Gokel, A. Mukhopadhyay, Chem. Soc. Rev. 2001, 30, 274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1alt7o%3D&md5=a12d1fdb160016f9bef95287d1cf3736CAS |
[20] Kahn O., Molecular Magnetism 1993 (VCH: New York).
[21] Magnetism: Molecules to Materials IV (Eds J. S. Miller, M. Drillon) 2003 (Wiley-VCH: Weinheim).
[22] Marder S. R., in Metal-Containing Materials for Non-linear Optics in Inorganic Materials, 2nd edn (Eds D. W. Bruce, D. OHare) 1996, p. 121 (Wiley: Chichester, UK).
[23] O. R. Evans, W. Lin, Acc. Chem. Res. 2002, 35, 511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFOisbs%3D&md5=fcff2d021d82122dd28fea23ef47660dCAS | 12118990PubMed |
[24] Handbook of Liquid Crystals (Eds D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill) 1998 (Wiley-VCH: Weinheim).
[25] Special issue on Chemical Sensors. Chem. Rev. 2000, 100, 2537.
[26] M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Angew. Chem. Int. Ed. Engl. 1997, 36, 1725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVSjtrw%3D&md5=6333bb9af2bbc02b884c257f555b5f8cCAS |
[27] (a) S. Wang, J. F. Bai, H. Xing, Y. Z. Li, Y. Song, Y. Pan, M. Scheer, X. Z. You, Cryst. Growth Des. 2007, 7, 747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVajtrg%3D&md5=d61376c61ab4cf61b967daff196ab721CAS |
(b) X. C. Huang, S. L. Zheng, J. P. Zhang, X. M. Chen, Eur. J. Inorg. Chem. 2004, 1024.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Lu, N. Y. Zhu, C. M. Che, Chem. Commun. 2002, 900.
| Crossref | GoogleScholarGoogle Scholar |
[28] (a) M. L. Scudder, H. A. Goodwin, I. G. Dance, New J. Chem. 1999, 23, 695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1ahtbg%3D&md5=fdea20a32afa63a441c359d95c52b4e1CAS |
(b) J. McMurtrie, I. Dance, CrystEngComm 2005, 7, 216.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. McMurtrie, I. Dance, CrystEngComm 2005, 7, 230.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. McMurtrie, I. Dance, CrystEngComm 2009, 11, 1141.
| Crossref | GoogleScholarGoogle Scholar |
(e) I. Dance, M. Scudder, CrystEngComm 2009, 11, 2233.
| Crossref | GoogleScholarGoogle Scholar |
(f) C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
| Crossref | GoogleScholarGoogle Scholar |
[29] (a) J. Pickardt, B. Staub, K. O. Z. Schafer, Anorg. Allg. Chem. 1999, 625, 1217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1yju7s%3D&md5=53860e0d25f1763e27cb1fc26233e3a7CAS |
(b) C. J. Corbridge, Chem. Soc. 1956, 594.
(c) M. A. Harvey, S. Baggio, M. T. Garland, R. J. Baggio, Coord. Chem. 2005, 58, 243.
| Crossref | GoogleScholarGoogle Scholar |
[30] (a) E. Freire, S. Baggio, R. Baggio, L. Suescun, J. Chem. Crystallogr. 1999, 29, 825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptlGrsg%3D%3D&md5=2d655b5414b6c370aa48f09b0a3a634dCAS |
(b) A. J. Canty, C. L. Raston, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 1982, 15.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. J. Canty, N. Chaichit, B. M. Gatehouse, E. E. George, G. Hayhurst, Inorg. Chem. 1981, 20, 2414.
| Crossref | GoogleScholarGoogle Scholar |
[31] (a) L. E. Cheruzel, M. S. Pometun, M. R. Cecil, M. S. Mashuta, R. J. Wittebort, R. M. Buchanan, Angew. Chem. Int. Ed. 2003, 42, 5452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFOqurk%3D&md5=765c00c507e486b023212cccd1da1a0aCAS |
(b) A. Mukherjee, M. K. Saha, M. Nethaji, A. R. Chakravarty, Chem. Commun. 2004, 716.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. Fei, D. Zhao, T. J. Geldbach, R. Scopelliti, P. J. Dyson, S. Antonijevic, G. Bodenhausen, Angew. Chem. Int. Ed. 2005, 44, 5720.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. K. Saha, A. Nangia, Chem. Commun. 2006, 1825.
| Crossref | GoogleScholarGoogle Scholar |
[32] G. Q. Yin, Q. H. Wei, L. Y. Zhang, Z. N. Chen, Organometallics 2006, 25, 580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFSi&md5=5b18d2b95a60a6abefb3622252c249dbCAS |
[33] X. M. Zhang, M. L. Tong, M. L. Gong, X. M. Chen, Eur. J. Inorg. Chem. 2003, 138.
| Crossref | GoogleScholarGoogle Scholar |
[34] (a) K. D. Belfield, M. V. Bondar, O. D. Kachkovsky, O. V. Przhonska, S. J. Yao, J. Lumin. 2007, 126, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks12gsbg%3D&md5=7b49849fa26f1941b7b33b9126f99e28CAS |
(b) C. C. Chang, J. F. Chu, H. H. Kuo, C. C. Kang, S. H. Lin, T. C. Chang, J. Lumin. 2006, 119–120, 84.
| Crossref | GoogleScholarGoogle Scholar |
[35] Sheldrick G. M., SHELXS97, Program for Crystal Structure Solution 1997 (University of Göttingen: Göttigen, Germany).