Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Crystal Structures and Luminescence Behaviour of d10 Metal–Organic Complexes with Multipyridine Ligands

Chunfeng Yan A B , Qihui Chen A , Lian Chen A , Rui Feng A , Xiaochen Shan A , Feilong Jiang A C and Maochun Hong A C
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China.

B The Research Centre of Applied Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China.

C Corresponding authors. Email: fjiang@fjirsm.ac.cn; hmc@fjirsm.ac.cn

Australian Journal of Chemistry 64(1) 104-118 https://doi.org/10.1071/CH10175
Submitted: 29 April 2010  Accepted: 24 October 2010   Published: 14 January 2011

Abstract

Six d10 metal–organic complexes with multipyridine ligands, [Cd(terpy)2](NO3)2·2H2O (1), [Cd(terpy)(NO3)2(H2O)] (2), [Hg(terpy)I2] (3), [Zn(tpt)(NO3)(H2O)2]NO3 (4), [Zn2(tpt)2(4,4′-bipy)(4H2O)](NO3)4·4H2O (5), [Zn(tpt)(OAc)2]·5H2O (6) (terpy = 2,2′:6′,2′-terpyridine, tpt = 2,4,6-tri(2-pyridyl)-1,3,5-triazine, 4,4′-bipy = 4,4′-bipyridine) were synthesized and structurally characterized. The abundant hydrogen-bonding interactions extend complex 2 into ladder-like 1D chains, discrete molecules of 4 into a 2D layer structure, complex 5 into a 2D hydrogen-bonded network through linking the hydrogen-bonded ribbons with hexagonal and four-sided rings, and complex 6 into a 3D hydrogen-bonded network through combining water helical chains. Fluorescence analyses of 16 in the solid state are investigated at both room temperature and 10 K. The emission spectra of 12 show a large red shift, which is ascribed to ligand-to-ligand charge transfer combined with ligand-to-metal charge transfer, whereas emissions of 46 all originate from intraligand π-π* transitions. In organic solvents, 16 behave very differently and their emission spectra exhibit various luminescences, with an obvious blue shift indicating strong solvent effects. The X-ray diffraction and thermal gravimetric analyses for complexes 16 are also reported.


References

[1]  S. S. Sun, A. J. Lees, Coord. Chem. Rev. 2002, 230, 171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Ogtbs%3D&md5=1dfe2741b52f71911e5a40a963f256aaCAS |

[2]  C. Janiak, J. Chem. Soc., Dalton Trans. 2003, 2781.
         | 1:CAS:528:DC%2BD3sXlt1emsb4%3D&md5=d76b6fc722627bfa9ab812969850177aCAS |

[3]  B. Zhao, X. Y. Chen, P. Cheng, D. Z. Liao, S. P. Yan, Z. H. Jiang, J. Am. Chem. Soc. 2004, 126, 15394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlSisrg%3D&md5=3389f0e440eca4ec55dcbfb5caae9e57CAS | 15563162PubMed |

[4]  L. Han, Y. Q. Gong, D. Q. Yuan, M. C. Hong, J. Mol. Struct. 2006, 789, 128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Gmsr4%3D&md5=b794ff66120ab79bcacb29292a855b0bCAS |

[5]  A. Barbieri, G. Accorsi, N. Armaroli, Chem. Commun. 2008, 2185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFOltrw%3D&md5=f7b522f1ebfeb3af5136ab5012e91f55CAS |

[6]  (a) A. P. Zipp, Coord. Chem. Rev. 1988, 84, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitFGisLc%3D&md5=8e47acc2bc1014d4983a237a26f41e97CAS |
      (b) V. W. W. Yam, K. K. W. Lo, Chem. Soc. Rev. 1999, 28, 323.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. D. Harvey, H. B. Gray, J. Am. Chem. Soc. 1988, 110, 2145.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) V. W. W. Yam, Acc. Chem. Res. 2002, 35, 555.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) M. A. Harvey, S. Baggio, M. T. Garland, R. Baggio, Aust. J. Chem. 2001, 54, 711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Cjsrs%3D&md5=83fd2a09200f6b6d2b6d5a4072a82be8CAS |
      (b) A. J. Canty, G. Hayhurst, N. Chaichit, B. M. Gatehouse, J. Chem. Soc. Chem. Commun. 1980, 316.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. D. L. Saunders, N. Burford, U. Werner-Zwanziger, R. McDonald, Inorg. Chem. 2008, 47, 3693.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  P. J. Jiang, Z. J. Guo, Coord. Chem. Rev. 2004, 248, 205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1yht78%3D&md5=778cdea7d9f321085faba86a09ebe982CAS |

[9]  P. Carol, S. Sreejith, A. Ajayaghosh, Chem. Asian J. 2007, 2, 338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlWgtrg%3D&md5=ffbb237b62bad8c5e157b4387e6b8aeaCAS | 17441169PubMed |

[10]  (a) R. C. Evans, P. Douglas, C. J. Winscom, Coord. Chem. Rev. 2006, 250, 2093.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslGms7Y%3D&md5=17b009ba861a9617e5b5efb19bc45189CAS |
      (b) S. N. Wang, Coord. Chem. Rev. 2001, 215, 79.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) M. L. Główka, D. Martynowski, K. Kozłowska, J. Mol. Struct. 1999, 474, 81.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. Pan, N. W. Zheng, N. W. Wu, X. Y. Huang, J. Coord. Chem. 1999, 47, 551.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. A. Hunter, Chem. Soc. Rev. 1994, 23, 101.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. L. Główka, D. Martynowski, K. Kozłowska, J. Mol. Struct. 1999, 474, 81.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFWguw%3D%3D&md5=adf5e94e32108c937ffe16d5ad759fadCAS |
      (b) G. R. Desiraju, Acc. Chem. Res. 2002, 35, 565.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Bose, J. Banerjee, Sk. H. Rahaman, G. Mostafa, H. K. Fun, R. D. Bailey Walsh, M. J. Zaworotko, B. K. Ghosh, Polyhedron 2004, 23, 2045.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) G. M. Whitesides, E. E. Simaneck, J. P. Mathias, C. T. Seto, D. N. Chin, M. Mommen, D. M. Cordon, Acc. Chem. Res. 1995, 28, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtF2rs7w%3D&md5=8e02d4f34f04d9dffd242ddecb577a71CAS |
      (b) J. J. Wolff, Angew. Chem. Int. Ed. Engl. 1996, 35, 2195.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. C. Wang, W. C. Lo, C. C. Chou, G. H. Lee, J. M. Chem, S. M. Peng, Inorg. Chem. 1998, 37, 4059.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. J. Shieh, C. C. Chou, G. H. Lee, J. M. Chem, S. M. Peng, Angew. Chem. Int. Ed. Engl. 1997, 36, 56.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) F. A. Cotton, L. M. Daniel, G. T. Jordan, C. A. Murillo, Chem. Commun. 1997, 1673.
         | Crossref | GoogleScholarGoogle Scholar |
      Lehn  J. M., Supramolecular Chemistry, 1st edn 1995 (VCH: New York).
      (g) D. Philp, J. F. Stoddart, Angew. Chem. Int. Ed. Engl. 1996, 35, 1154.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) M. Meot-ner, Chem. Rev. 2005, 105, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslWkug%3D%3D&md5=ebabc68a10d667c94376435b62405dceCAS | 15729772PubMed |
      (b) W. S. Allison, Acc. Chem. Res. 1976, 9, 293.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. P. Zhou, X. J. Zhang, S. H. Lin, D. Li, Cryst. Growth Des. 2007, 7, 485.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) H. G. Zhu, M. Ströbele, Z. Yu, Z. Wang, H.-J. Meyer, X. Z. You, Inorg. Chem. Commun. 2001, 4, 577.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntV2gs7c%3D&md5=6fee825ec7f2df22a62071b6afbde860CAS |
      (b) D. Bose, S. H. Rahaman, G. Mostafa, R. D. Bailey Walsh, M. J. Zaworotko, B. K. Ghosh, Polyhedron 2004, 23, 545.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  Catalysis from A to Z: A Concise Encyclopedia (Eds B. Cornils, W. A. Herrmann, R. Schlogl) 2000 (Wiley: New York).

[18]  Farraro  J. R., Williams  J. M., Introduction to Synthetic Electrical Conductors 1987 (Academic Press: New York).

[19]  G. W. Gokel, A. Mukhopadhyay, Chem. Soc. Rev. 2001, 30, 274.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1alt7o%3D&md5=a12d1fdb160016f9bef95287d1cf3736CAS |

[20]  Kahn  O., Molecular Magnetism 1993 (VCH: New York).

[21]  Magnetism: Molecules to Materials IV (Eds J. S. Miller, M. Drillon) 2003 (Wiley-VCH: Weinheim).

[22]  Marder  S. R., in Metal-Containing Materials for Non-linear Optics in Inorganic Materials, 2nd edn (Eds D. W. Bruce, D. OHare) 1996, p. 121 (Wiley: Chichester, UK).

[23]  O. R. Evans, W. Lin, Acc. Chem. Res. 2002, 35, 511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFOisbs%3D&md5=fcff2d021d82122dd28fea23ef47660dCAS | 12118990PubMed |

[24]  Handbook of Liquid Crystals (Eds D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill) 1998 (Wiley-VCH: Weinheim).

[25]  Special issue on Chemical Sensors. Chem. Rev. 2000, 100, 2537. 10.1021/CR9801014

[26]  M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Angew. Chem. Int. Ed. Engl. 1997, 36, 1725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVSjtrw%3D&md5=6333bb9af2bbc02b884c257f555b5f8cCAS |

[27]  (a) S. Wang, J. F. Bai, H. Xing, Y. Z. Li, Y. Song, Y. Pan, M. Scheer, X. Z. You, Cryst. Growth Des. 2007, 7, 747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVajtrg%3D&md5=d61376c61ab4cf61b967daff196ab721CAS |
      (b) X. C. Huang, S. L. Zheng, J. P. Zhang, X. M. Chen, Eur. J. Inorg. Chem. 2004, 1024.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Lu, N. Y. Zhu, C. M. Che, Chem. Commun. 2002, 900.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  (a) M. L. Scudder, H. A. Goodwin, I. G. Dance, New J. Chem. 1999, 23, 695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1ahtbg%3D&md5=fdea20a32afa63a441c359d95c52b4e1CAS |
      (b) J. McMurtrie, I. Dance, CrystEngComm 2005, 7, 216.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. McMurtrie, I. Dance, CrystEngComm 2005, 7, 230.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. McMurtrie, I. Dance, CrystEngComm 2009, 11, 1141.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) I. Dance, M. Scudder, CrystEngComm 2009, 11, 2233.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  (a) J. Pickardt, B. Staub, K. O. Z. Schafer, Anorg. Allg. Chem. 1999, 625, 1217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1yju7s%3D&md5=53860e0d25f1763e27cb1fc26233e3a7CAS |
      (b) C. J. Corbridge, Chem. Soc. 1956, 594.
      (c) M. A. Harvey, S. Baggio, M. T. Garland, R. J. Baggio, Coord. Chem. 2005, 58, 243.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  (a) E. Freire, S. Baggio, R. Baggio, L. Suescun, J. Chem. Crystallogr. 1999, 29, 825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptlGrsg%3D%3D&md5=2d655b5414b6c370aa48f09b0a3a634dCAS |
      (b) A. J. Canty, C. L. Raston, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 1982, 15.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. J. Canty, N. Chaichit, B. M. Gatehouse, E. E. George, G. Hayhurst, Inorg. Chem. 1981, 20, 2414.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  (a) L. E. Cheruzel, M. S. Pometun, M. R. Cecil, M. S. Mashuta, R. J. Wittebort, R. M. Buchanan, Angew. Chem. Int. Ed. 2003, 42, 5452.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFOqurk%3D&md5=765c00c507e486b023212cccd1da1a0aCAS |
      (b) A. Mukherjee, M. K. Saha, M. Nethaji, A. R. Chakravarty, Chem. Commun. 2004, 716.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Z. Fei, D. Zhao, T. J. Geldbach, R. Scopelliti, P. J. Dyson, S. Antonijevic, G. Bodenhausen, Angew. Chem. Int. Ed. 2005, 44, 5720.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B. K. Saha, A. Nangia, Chem. Commun. 2006, 1825.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  G. Q. Yin, Q. H. Wei, L. Y. Zhang, Z. N. Chen, Organometallics 2006, 25, 580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFSi&md5=5b18d2b95a60a6abefb3622252c249dbCAS |

[33]  X. M. Zhang, M. L. Tong, M. L. Gong, X. M. Chen, Eur. J. Inorg. Chem. 2003, 138.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  (a) K. D. Belfield, M. V. Bondar, O. D. Kachkovsky, O. V. Przhonska, S. J. Yao, J. Lumin. 2007, 126, 14.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks12gsbg%3D&md5=7b49849fa26f1941b7b33b9126f99e28CAS |
      (b) C. C. Chang, J. F. Chu, H. H. Kuo, C. C. Kang, S. H. Lin, T. C. Chang, J. Lumin. 2006, 119–120, 84.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  Sheldrick  G. M., SHELXS97, Program for Crystal Structure Solution 1997 (University of Göttingen: Göttigen, Germany).