Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Theoretical Investigation of Organic Amines as Hole Transporting Materials: Correlation to the Hammett Parameter of the Substituent, Ionization Potential, and Reorganization Energy Level

Jiunn-Hung Pan A D , Yu-Ma Chou B , Houn-Lin Chiu C and Bo-Cheng Wang A D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Tamkang University, Tamsui 251, Taiwan.

B Department of Physics, Chinese Culture University, Taipei 110, Taiwan.

C Department of Chemistry, National Kaohsing Normal University, Kaohsing 802, Taiwan.

D Corresponding authors. Email: petersonpan@yahoo.com.tw; bcw@mail.tku.edu.tw

Australian Journal of Chemistry 62(5) 483-492 https://doi.org/10.1071/CH08348
Submitted: 14 August 2008  Accepted: 10 February 2009   Published: 15 May 2009

Abstract

Theoretical calculations on organic amines widely used as hole-transporting materials (HTMs) in multilayer organic light-emitting diodes have been performed. The calculated Ip and the reorganization energy for hole transport (λ+) of triphenylamine (TPA), 9-phenyl-9H-carbazole (PC), and their derivatives, are found to be related to their Hammett parameter (σ). In this study, the density functional theory (DFT) calculation is used to optimize 82 TPA and PC derivatives. Electronic structures of these compounds in the neutral and the radical-cation states are obtained based on calculations on optimized geometrical structures. The Ip and λ+ values are derived from calculated heats of formation (or total energy) of the neutral and the radical-cation states. In particular, the calculated Ips for these derivatives correlate well with the experimental data. The substitution effect for the mono-substituted TPA and PC is displayed in that the Ips of the TPA and PC derivatives with electron-donating and -withdrawing substituents are lower and higher than those of TPA and PC, respectively. For the effect of substitution position, the para-substituted TPA derivatives have higher Ip and –EHOMO than those of meta-substituted TPAs. The substitution effects in di- and tri-substituted TPAs are more pronounced than that of mono-substituted ones. According to the results, the calculated Ips shows an excellent agreement with the experimental oxidation potentials (EP/2) in these TPA derivatives. Furthermore, these calculation results can be employed to predict electro-luminescent properties for new and improved HTMs.


Acknowledgements

The authors thank Dr Marc Blenkiron for reading the manuscript and the National Council of Taiwan for financial support of this work.


References


[1]   A. P. De Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev. 1997, 97,  1515.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1