Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Metal-Controlled Assembly Tuning Coordination Polymers with Flexible 2-(1H-imidazole-1-yl)acetic Acid (Hima)

Yong-Tao Wang A B , Gui-Mei Tang A and Da-Wei Qin A
+ Author Affiliations
- Author Affiliations

A Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250100, China.

B Corresponding author. Email: ceswyt@sohu.com

Australian Journal of Chemistry 59(9) 647-652 https://doi.org/10.1071/CH06183
Submitted: 30 May 2006  Accepted: 13 September 2006   Published: 19 October 2006

Abstract

Three new inorganic–organic coordination polymers based on a versatile linking unit 2-(1H-imidazole-1-yl)acetate (Hima) and divalent Mn(ii), Ni(ii), and Cu(ii) ions, exhibiting two kinds of two dimensionalities with different topological structures, have been prepared in water medium and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of MnCl2·4H2O and Ni(NO3)2·6H2O with Hima yielded neutral two-dimensional (2D) coordination polymers [M(ima)2]n, M = Mn(ii) 1, and Ni(ii) 2 with isostructural 2D coordination polymers possessing (3,6) topology structures, which further stack into three-dimensional (3D) supramolecular networks through C–H···O weak interactions. However, when Cu(NO3)2·4H2O was used, a neutral 2D coordination polymer [Cu(ima)2]n 3 consisting of rhombus units was generated, which showed a 3D supramolecular network through C–H···O weak interactions. Among these polymers, the building block ima anion exhibits different coordination modes. These results indicate that the versatile nature of this flexible ligand, together with the coordination preferences of the metal ions, plays a critical role in construction of these novel coordination polymers. Spectral and thermal properties of these new materials have also been investigated.


Acknowledgments

This work was financially supported by Start Funding of the Shandong Institute of Light Industry. We are indebted to Jian-Ping Ma at Shandong Normal University for collecting crystal structure data and to Xiao-Ming Chen at Sun Yat-Sen University for helpful discussions.


References


[1]   (a) A. Erxleben, Coord. Chem. Rev. 2003, 246,  203.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |   in press
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1

[16]   SAINT 1998 (ASX Bruker: Madison, WI).

[17]   G. M. Sheldrick, SHELXTL NT Ver. 5.1 1997 (University of Göttingen: Göttingen).

[18]   K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds 1986 (John Wiley & Sons: New York, NY).

[19]   A. F. Wells, Three-Dimensional Nets and Polyhedra 1977 (Wiley–Interscience: New York, NY).

[20]   G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology 1999 (Oxford University Press: New York, NY).