Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE (Open Access)

A comprehensive functional trait database of seagrasses in tropical Queensland

Chieh Lin https://orcid.org/0009-0000-0539-6372 A * , Robert G. Coles B , Michael A. Rasheed B and Alana Grech A
+ Author Affiliations
- Author Affiliations

A College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.

B Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Cairns, Qld 4870, Australia.

* Correspondence to: chieh.lin@my.jcu.edu.au

Handling Editor: Chris Blackman

Australian Journal of Botany 72, BT24017 https://doi.org/10.1071/BT24017
Submitted: 29 February 2024  Accepted: 17 October 2024  Published: 8 November 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Context

Seagrasses form an important habitat that provides diverse ecosystem services essential for both the environment and people. In tropical Queensland, Australia, these meadows hold significant economic and cultural value, serving as nurseries for marine species and sustaining dugongs and green turtles. The biomass and size of tropical seagrass meadows in Queensland varies considerably and are influenced by various factors, both biotic and abiotic.

Aims

Functional trait-based approaches can improve the estimation of seagrass-meadow resilience and services provision by describing the relationship between environment and individual performance. To support these approaches, we provide a seagrass functional-trait database focusing on resilience and function provision for tropical Queensland.

Methods

We employed a combination of literature reviews, database searches, botanical information, and structured expert elicitation to target 17 functional traits across 13 seagrass species in tropical Queensland.

Key results

We developed a traits database to inform functional trait-based approaches to assessing seagrass-meadow resilience and dynamics. The outputs included trait information for approximately 78% of the targeted traits (of 221 unique trait–seagrass combinations).

Conclusions

With current information on functional traits, we can improve the estimation of resilience and ecosystem services for tropical Queensland seagrass species. We have also highlighted trait data gaps and areas for further research.

Implications

We have provided examples of applying this database within the tropical Queensland context, with the potential to facilitate regional comparative studies. Our database complements existing plant-trait databases and serves as a valuable resource for future trait-based seagrass research in tropical Queensland.

Keywords: database, ecosystem services, functional trait, plant morphology, resilience, seagrasses, trait-based approach, tropical Queensland.

References

Adams-Hosking C, McBride MF, Baxter G, Burgman M, de Villiers D, Kavanagh R, Lawler I, Lunney D, Melzer A, Menkhorst P, Molsher R, Moore BD, Phalen D, Rhodes JR, Todd C, Whisson D, McAlpine CA (2016) Use of expert knowledge to elicit population trends for the koala (Phascolarctos cinereus). Diversity and Distributions 22, 249-262.
| Crossref | Google Scholar |

Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C (2011) When and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology, Evolution and Systematics 13, 217-225.
| Crossref | Google Scholar |

Balata D, Nesti U, Piazzi L, Cinelli F (2007) Patterns of spatial variability of seagrass epiphytes in the north-west mediterranean sea. Marine Biology 151, 2025-2035.
| Crossref | Google Scholar |

Belluau M, Shipley B (2018) Linking hard and soft traits: physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots. PLoS ONE 13, e0193130.
| Crossref | Google Scholar | PubMed |

Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. Trends in Ecology and Evolution 26, 183-192.
| Crossref | Google Scholar | PubMed |

Butt N, Gallagher R (2018) Using species traits to guide conservation actions under climate change. Climatic Change 151, 317-332.
| Crossref | Google Scholar |

Carter AB, Mckenna SA, Rasheed MA, Collier C, McKenzie L, Pitcher R, Coles R (2021a) Synthesizing 35 years of seagrass spatial data from the Great Barrier Reef World Heritage Area, Queensland, Australia. Limnology and Oceanography Letters 6, 216-226.
| Crossref | Google Scholar |

Carter AB, Collier C, Lawrence E, Rasheed MA, Robson BJ, Coles R (2021b) A spatial analysis of seagrass habitat and community diversity in the Great Barrier Reef World Heritage Area. Scientific Reports 11, 22344.
| Crossref | Google Scholar |

Carter A, McKenna S, Rasheed MA, Taylor H, van de Wetering C, Chartrand K, et al. (2024) Seagrass spatial data synthesis from north-east Australia, Torres Strait and Gulf of Carpentaria, 1983 to 2022. Limnology and Oceanography Letters 9(1), 7-22.
| Crossref | Google Scholar |

Christianen MJA, van Belzen J, Herman PMJ, van Katwijk MM, Lamers LPM, van Leent PJM, Bouma TJ (2013) Low-canopy seagrass beds still provide important coastal protection services. PLoS One 8, e62413.
| Crossref | Google Scholar | PubMed |

Coles RG, Rasheed MA, McKenzie LJ, Grech A, York PH, Sheaves M, McKenna S, Bryant C (2015) The Great Barrier Reef World Heritage area seagrasses: managing this iconic Australian ecosystem resource for the future. Estuarine, Coastal and Shelf Science 153, A1-A12.
| Crossref | Google Scholar |

Collier CJ, Uthicke S, Waycott M (2011) Thermal tolerance of two seagrass species at contrasting light levels: implications for future distribution in the Great Barrier Reef. Limnology and Oceanography 56(6), 2200-2210.
| Crossref | Google Scholar |

Collier CJ, Adams MP, Langlois L, Waycott M, O’Brien KR, Maxwell PS, McKenzie L (2016) Thresholds for morphological response to light reduction for four tropical seagrass species. Ecological Indicators 67, 358-366.
| Crossref | Google Scholar |

Collier CJ, Langlois LM, McMahon KM, Udy J, Rasheed M, Lawrence E, et al. (2021) What lies beneath: predicting seagrass below-ground biomass from above-ground biomass, environmental conditions and seagrass community composition. Ecological Indicators 121, 107156.
| Crossref | Google Scholar |

De Battisti D (2021) The resilience of coastal ecosystems: a functional trait-based perspective. Journal of Ecology 109, 3133-3146.
| Crossref | Google Scholar |

De los Santos C, Onoda Y, Vergara J, Pérez-Lloréns J, Bouma T, La Nafie Y, Cambridge M, Brun F (2016) A comprehensive analysis of mechanical and morphological traits in temperate and tropical seagrass species. Marine Ecology Progress Series 551, 81-94.
| Crossref | Google Scholar |

De los Santos CB, Machado J, De Moro G, Cox C, Santos R (2022) Seagrass TraitDB: global data base of seagrass traits. Available at http://seagrasses.ccmar.ualg.pt

Duarte CM (1990) Seagrass nutrient content. Marine Ecology Progress Series 67, 201-207.
| Crossref | Google Scholar |

Duarte CM (1991) Allometric scaling of seagrass form and productivity. Marine Ecology Progress Series 77, 289-300.
| Crossref | Google Scholar |

Dunic JC, Brown CJ, Connolly RM, Turschwell MP, Côté IM (2021) Long-term declines and recovery of meadow area across the world’s seagrass bioregions. Global Change Biology 27, 4096-4109.
| Crossref | Google Scholar | PubMed |

Falster D, Gallagher R, Wenk E, Wright IJ, Indiarto D, Andrew SC, Baxter C, Lawson J, Allen S, Fuchs A, Monro A, Kar F, Adams MA, Ahrens CW, Alfonzetti M, Angevin T, Apgaua DMG, Arndt S, Atkin OK, Atkinson J, Auld T, Baker A, von Balthazar M, Bean A, Blackman CJ, et al. (2021) AusTraits, a curated plant trait database for the Australian flora. Scientific Data 8, 254.
| Crossref | Google Scholar |

Felden J, Möller L, Schindler U, Huber R, Schumacher S, Koppe R, Diepenbroek M, Glöckner FO (2023) PANGAEA: Data Publisher for Earth & Environmental Science. Scientific Data 10, 347.
| Crossref | Google Scholar | PubMed |

Flora of Australia (2024) Australian biological resources study. Canberra. Available at http://www.ausflora.org.au [Viewed 10 February 2024].

Fonseca MS, Cahalan JA (1992) A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine, Coastal and Shelf Science 35, 565-576.
| Crossref | Google Scholar |

Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin DC, Sutton-Grier AE, Williams L, Wright J (2017) Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews 92, 1156-1173.
| Crossref | Google Scholar | PubMed |

Gacia E, Duarte CM (2001) Sediment retention by a mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuarine, Coastal and Shelf Science 52, 505-514.
| Crossref | Google Scholar |

Gallagher RV, Butt N, Carthey AJR, Tulloch A, Bland L, Clulow S, Newsome T, Dudaniec RY, Adams VM (2021) A guide to using species trait data in conservation. One Earth 4, 927-936.
| Crossref | Google Scholar |

Grootemaat S, Wright IJ, Van Bodegom PM, Cornelissen JHC, Shaw V (2017) Bark traits, decomposition and flammability of Australian forest trees. Australian Journal of Botany 65, 327-338.
| Crossref | Google Scholar |

Hemming V, Burgman MA, Hanea AM, McBride MF, Wintle BC (2018a) A practical guide to structured expert elicitation using the IDEA protocol. Methods in Ecology and Evolution 9, 169-180.
| Crossref | Google Scholar |

Hemming V, Walshe TV, Hanea AM, Fidler F, Burgman MA (2018b) Eliciting improved quantitative judgements using the IDEA protocol: a case study in natural resource management. PLoS ONE 13, e0198468.
| Crossref | Google Scholar | PubMed |

Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999) Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85, 282.
| Crossref | Google Scholar |

Hughes AR (2014) Genotypic diversity and trait variance interact to affect marsh plant performance. Journal of Ecology 102, 651-658.
| Crossref | Google Scholar |

Jacquet C, Mouillot D, Kulbicki M, Gravel D (2017) Extensions of Island Biogeography Theory predict the scaling of functional trait composition with habitat area and isolation. Ecology Letters 20, 135-146.
| Crossref | Google Scholar | PubMed |

James Cook University (2022) Turtles, dugongs in danger from seagrass loss. James Cook University media release. Available at https://www.jcu.edu.au/news/releases/2022/may/turtles-dugongs-in-danger-from-seagrass-loss

James A, Choy SL, Mengersen K (2010) Elicitator: an expert elicitation tool for regression in ecology. Environmental Modelling & Software 25, 129-145.
| Crossref | Google Scholar |

Jarvis JC, McKenna SA, Rahseed MA (2021) Seagrass seed bank spatial structure and function following a large-scale decline. Marine Ecology Progress Series 665, 75-87.
| Crossref | Google Scholar |

Jinks KI, Brown CJ, Rasheed MA, Scott AL, Sheaves M, York PH, Connolly RM (2019) Habitat complexity influences the structure of food webs in Great Barrier Reef seagrass meadows. Ecosphere 10, e02928.
| Crossref | Google Scholar |

Johnson RA, Gulick AG, Bolten AB, Bjorndal KA (2017) Blue carbon stores in tropical seagrass meadows maintained under green turtle grazing. Scientific Reports 7, 13545.
| Crossref | Google Scholar |

Johnson AJ, Shields EC, Kendrick GA, Orth RJ (2021) Recovery dynamics of the seagrass Zostera marina following mass mortalities from two extreme climatic events. Estuaries and Coasts 44, 535-544.
| Crossref | Google Scholar |

Jones BL, Nordlund LM, Unsworth RKF, Jiddawi NS, Eklöf JS (2021) Seagrass structural traits drive fish assemblages in small-scale fisheries. Frontiers in Marine Science 8, 640528.
| Crossref | Google Scholar |

Kattge J, Ogle K, Bönisch G, Díaz S, Lavorel S, Madin J, Nadrowski K, Nöllert S, Sartor K, Wirth C (2011) A generic structure for plant trait databases. Methods in Ecology and Evolution 2, 202-213.
| Crossref | Google Scholar |

Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GDA, Aakala T, Abedi M, Acosta ATR, Adamidis GC, Adamson K, Aiba M, Albert CH, Alcántara JM, Alcázar CC, Aleixo I, Ali H, et al. (2020) TRY plant trait database – enhanced coverage and open access. Global Change Biology 26, 119-188.
| Crossref | Google Scholar | PubMed |

Kelkar N, Arthur R, Marba N, Alcoverro T (2013) Green turtle herbivory dominates the fate of seagrass primary production in the Lakshadweep islands (Indian Ocean). Marine Ecology Progress Series 485, 235-243.
| Crossref | Google Scholar |

Koch EW, Sanford LP, Chen S-N, Shafer DJ, Smith JM (2006) ‘Waves in Seagrass Systems: Review and Technical Recommendations.’ (Defense Technical Information Center: Washington, DC, USA) doi:10.21236/ADA458760

Kuhnert PM, Martin TG, Griffiths SP (2010) A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecology Letters 13, 900-914.
| Crossref | Google Scholar | PubMed |

Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299-305.
| Crossref | Google Scholar | PubMed |

Laliberte E, Wells JA, DeClerck F, Metcalfe DJ, Catterall CP, Queiroz C, Aubin I, Bonser SP, Ding Y, Fraterrigo JM, McNamara S, Morgan JW, Merlos DS, Vesk PA, Mayfield MM (2010) Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters 13, 76-86.
| Crossref | Google Scholar | PubMed |

Larkum AWD, Orth RJ, Duarte CM (2006) ‘Seagrasses: biology, ecology, and conservation.’ (Springer: Dordrecht, Netherlands) 10.1007/978-1-4020-2983-7

Larkum AWD, Kendrick GA, Ralph PJ (2018) ‘Seagrasses of Australia: structure, ecology and conservation.’ (Springer International Publishing) doi:10.1007/978-3-319-71354-0

Lavery PS, Mateo M-Á, Serrano O, Rozaimi M (2013) Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service. PLoS ONE 8, e73748.
| Crossref | Google Scholar | PubMed |

LeRoy Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25, 730-755.
| Crossref | Google Scholar |

Longstaff BJ, Dennison WC (1999) Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquatic Botany 65, 105-121.
| Crossref | Google Scholar |

Longstaff BJ, Loneragan NR, O’donohue MJ, Dennison WC (1999) Effects of light deprivation on the survival and recovery of the seagrass Halophila ovalis (R. Br.) Hook. Journal of Experimental Marine Biology and Ecology 234(1), 1–-27.
| Crossref | Google Scholar |

Mallen-Cooper M, Bowker MA, Antoninka AJ, Eldridge DJ (2020) A practical guide to measuring functional indicators and traits in biocrusts. Restoration Ecology 28, S56-S66.
| Crossref | Google Scholar |

Martin TG, Burgman MA, Fidler F, Kuhnert PM, Low-Choy S, Mcbride M, Mengersen K (2012) Eliciting expert knowledge in conservation science. Conservation Biology 26, 29-38.
| Crossref | Google Scholar | PubMed |

Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112-118.
| Crossref | Google Scholar |

McKenna S, Jarvis J, Sankey T, Reason C, Coles R, Rasheed M (2015) Declines of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single event. Journal of Biosciences 40, 389-398.
| Crossref | Google Scholar | PubMed |

McKenzie LJ, Collier CJ, Langlois LA, Yoshida RL, Smith N, Waycott M (2016) Marine Monitoring Program: Annual Report for inshore seagrass monitoring: 2014 to 2015. Report for the Great Barrier Reef Marine Park Authority, Cairns, Qld, Australia.

Moreira-Saporiti A, Teichberg M, Garnier E, Cornelissen JHC, Alcoverro T, Björk M, Boström C, Dattolo E, Eklöf JS, Hasler-Sheetal H, Marbà N, Marín-Guirao L, Meysick L, Olivé I, Reusch TBH, Ruocco M, Silva J, Sousa AI, Procaccini G, Santos R (2023) A trait-based framework for seagrass ecology: trends and prospects. Frontiers in Plant Science 14, 1088643.
| Crossref | Google Scholar | PubMed |

Nash KL, Graham NAJ, Jennings S, Wilson SK, Bellwood DR (2016) Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. Journal of Applied Ecology 53, 646-655.
| Crossref | Google Scholar |

Nock CA, Vogt RJ, Beisner BE (2016) Functional traits. In ‘eLS’. pp. 1–8. (John Wiley & Sons: Chichester, UK) doi:10.1002/9780470015902.a0026282

O’Brien KR, Waycott M, Maxwell P, Kendrick GA, Udy JW, Ferguson AJP, Kilminster K, Scanes P, McKenzie LJ, McMahon K, Adams MP, Samper-Villarreal J, Collier C, Lyons M, Mumby PJ, Radke L, Christianen MJA, Dennison WC (2018) Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Marine Pollution Bulletin 134, 166-176.
| Crossref | Google Scholar | PubMed |

Poiner IR, Conacher CA, Loneragan NR, Sonters L (1993) Effects of Cyclones on seagrass Communities and penaeid prawn stocks of the Gulf of Carpentaria. FRDC final report, Brisbane, Qld, Australia.

Preen AR, Lee Long WJ, Coles RG (1995) Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquatic Botany 52, 3-17.
| Crossref | Google Scholar |

Rasheed M (2000) Recovery and succession in north Queensland tropical seagrass communities. PhD Thesis, School of Tropical Environment Studies and Geography, James Cook University, Qld, Australia.

Rasheed MA, McKenna SA, Carter AB, Coles RG (2014) Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Marine Pollution Bulletin 83, 491-499.
| Crossref | Google Scholar | PubMed |

Saunders MI, Bayraktarov E, Roelfsema CM, Leon JX, Samper-Villarreal J, Phinn SR, et al. (2015) Spatial and temporal variability of seagrass at Lizard Island, Great Barrier Reef. Botanica Marina 58(1), 35-49.
| Crossref | Google Scholar |

Speirs-Bridge A, Fidler F, McBride M, Flander L, Cumming G, Burgman M (2010) Reducing overconfidence in the interval judgments of experts. Risk Analysis 30, 512-523.
| Crossref | Google Scholar | PubMed |

Streit RP, Bellwood DR (2023) To harness traits for ecology, let’s abandon ‘functionality’. Trends in Ecology & Evolution 38, 402-411.
| Crossref | Google Scholar | PubMed |

Strydom S, McCallum R, Lafratta A, Webster CL, O’Dea CM, Said NE, Dunham N, Inostroza K, Salinas C, Billinghurst S, Phelps CM, Campbell C, Gorham C, Bernasconi R, Frouws AM, Werner A, Vitelli F, Puigcorbé V, D’Cruz A, McMahon KM, Robinson J, Huggett MJ, McNamara S, Hyndes GA, Serrano O (2023) Global dataset on seagrass meadow structure, biomass and production. Earth System Science Data 15, 511-519.
| Crossref | Google Scholar |

Sullivan I, DeHaven A, Mellor D (2019) Open and reproducible research on open science framework. Current Protocols Essential Laboratory Techniques 18, e32.
| Crossref | Google Scholar |

Tol SJ, Coles RG, Congdon BC (2016) Dugong dugon feeding in tropical Australian seagrass meadows: implications for conservation planning. PeerJ 4, e2194.
| Crossref | Google Scholar | PubMed |

Twomey AJ, O’Brien KR, Callaghan DP, Saunders MI (2020) Synthesising wave attenuation for seagrass: drag coefficient as a unifying indicator. Marine Pollution Bulletin 160, 111661.
| Crossref | Google Scholar | PubMed |

van Rooijen A, Lowe R, Ghisalberti M, Conde-Frias M, Tan L (2018) Predicting current-induced drag in emergent and submerged aquatic vegetation canopies. Frontiers in Marine Science 5, 449.
| Crossref | Google Scholar |

Vandewalle M, de Bello F, Berg MP, Bolger T, Dolédec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, da Silva PM, Moretti M, Niemelä J, Santos P, Sattler T, Sousa JP, Sykes MT, Vanbergen AJ, Woodcock BA (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity and Conservation 19, 2921-2947.
| Crossref | Google Scholar |

Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional!. Oikos 116, 882-892.
| Crossref | Google Scholar |

Waycott M, Mcmahon K, Mellors J, Calladine A, Kleine D (2004) ‘A guide to tropical seagrasses of the Indo-West Pacific.’ (James Cook University: Townsville, Qld, Australia)

Westerband AC, Funk JL, Barton KE (2021) Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. Annals of Botany 127, 397-410.
| Crossref | Google Scholar | PubMed |

Wood SLR, Dupras J (2021) Increasing functional diversity of the urban canopy for climate resilience: Potential tradeoffs with ecosystem services? Urban Forestry and Urban Greening 58, 126972.
| Crossref | Google Scholar |