Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Flora and structure of the naturally regenerating riparian vegetation of the Rio Doce River: basis for environmental restoration actions

José Gustavo Santana Neves A , Camila Silveira Souza https://orcid.org/0000-0003-0856-9392 A B , João Carlos Gomes Figueiredo B C , Cristina Pereira de Jesus Veloso A B , Marly Antonielle de Ávila B , Odirlei Simões de Oliveira B , Islaine Franciely Pinheiro de Azevedo A B , Rubens Manoel dos Santos A D , Geraldo Wilson Fernandes E F and Yule Roberta Ferreira Nunes https://orcid.org/0000-0003-3328-7506 A B C *
+ Author Affiliations
- Author Affiliations

A Programa de Pós-Graduação em Botânica Aplicada, Universidade Estadual de Montes Claros, Caixa Postal 126, CEP 39401-089 Montes Claros, MG, Brazil.

B Laboratório de Ecologia Vegetal, Universidade Estadual de Montes Claros, Caixa Postal 126, CEP 39401-089 Montes Claros, MG, Brazil.

C Programa de Pós-graduação em Biotecnologia, Universidade Estadual de Montes Claros, Caixa Postal 126, CEP 39401-089 Montes Claros, MG, Brazil.

D Laboratório de Fitogeografia e Ecologia Evolutiva, Universidade Federal de Lavras, Departamento de Ciências Florestais, Caixa Postal 3037, CEP 37200-000, Lavras, MG, Brazil.

E Laboratório de Ecologia Evolutiva e Biodiversidade, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, CEP 31270-901, Belo Horizonte, MG, Brazil.

F Knowledge Center for Biodiversity, Belo Horizonte, MG, CEP 31270-901, Brazil.

* Correspondence to: yule.nunes@unimontes.br

Handling Editor: John Morgan

Australian Journal of Botany 72, BT23078 https://doi.org/10.1071/BT23078
Submitted: 16 October 2023  Accepted: 24 August 2024  Published: 16 September 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

The failure of the Fundão dam devastated a large area of the Atlantic Forest, causing damage to and loss of riparian forests. Considering all the ecological roles of a terrestrial and freshwater community, it is necessary to understand the functioning of riparian forests and their regenerative potential, which will be decisive in selecting actions to restore these ecosystems, especially Atlantic Forest remnants.

Aims

We evaluated the flora and structure of the regenerating stratum in three riparian vegetation remnants along the Rio Doce basin to support the propagation and restoration of the affected environments.

Methods

Plots of 5 m × 5 m were made in each area, totalling 77 sampling units. In these plots, all woody individuals with a diameter at soil height (DSH) of at least ≥1 cm and diameter at breast height (1.3 m from the soil) of at least <5 cm were marked, measured (in height and DSH), sampled and identified.

Key results

A total of 275 species distributed in 47 families were sampled, with Fabaceae the most diverse family and Siparuna guianensis Aubl. the most abundant species. Variation in β diversity was significant, and composition analysis showed that plots of each area tended to cluster. Principal component analysis and linear models showed that the edaphic parameters were not related to the richness and abundance of species in the sampled areas.

Conclusions

The areas sampled here serve as a reference for the restoration of impacted areas.

Implications

This study represents an important step towards knowing the species in reference areas for an active and efficient restoration in impacted areas.

Keywords: anthropic impacts, beta diversity, biodiversity, checklist, conservation, edaphic traits, environmental disasters, phytosociology, tropical vegetation.

References

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JDM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711-728.
| Crossref | Google Scholar |

Arroyo-Rodríguez V, Rös M, Escobar F, Melo FPL, Santos BA, Tabarelli M, Chazdon R (2013) Plant β-diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. Journal of Ecology 101, 1449-1458.
| Crossref | Google Scholar |

Balestrin D, Cruz R, Silveira G, Martins SV (2019) Hydric and edaphic influence on floristic composition in an altered riparian area. Floresta e Ambiente 26, e20171002.
| Crossref | Google Scholar |

Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity: partitioning beta diversity. Global Ecology and Biogeography 19, 134-143.
| Crossref | Google Scholar |

Brancalion PHS, Cardozo IV, Camatta A, Aronson J, Rodrigues RR (2014) Cultural ecosystem services and popular perceptions of the benefits of an ecological restoration project in the Brazilian Atlantic Forest. Restoration Ecology 22, 65-71.
| Crossref | Google Scholar |

Carim S, Schwartz G, Silva MFFD (2007) Riqueza de espécies, estrutura e composição florística de uma floresta secundária de 40 anos no leste da Amazônia. Acta Botanica Brasilica 21, 293-308.
| Crossref | Google Scholar |

Carmo FFD, Kamino LHY, Junior RT, Campos ICD, Carmo FFD, Silvino G, Castro KJDSXD, Mauro ML, Rodrigues NUA, Miranda MPDS, Pinto CEF (2017) Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspectives in Ecology and Conservation 15, 145-151.
| Crossref | Google Scholar |

Ceccon E, Huante P, Rincón E (2006) Abiotic factors influencing tropical dry forests regeneration. Brazilian Archives of Biology and Technology 49, 305-312.
| Crossref | Google Scholar |

Chao A (1984) Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265-270.
| Google Scholar |

Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society B: Biological Sciences 345, 101-118.
| Crossref | Google Scholar |

Condit R, Pitman N, Leigh EG, Jr, Chave J, Terborgh J, Foster RB, Núñez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical forest trees. Science 295, 666-669.
| Crossref | Google Scholar | PubMed |

Cruz GS, Domingues AL (2017) Áreas impactadas na subbacia do Rio Gualaxo do Norte: rompimento da Barragem de Fundão, MG. Disciplinarum Scientia | Naturais e Tecnológicas 18, 277-286.
| Google Scholar |

Dugdale SJ, Malcolm IA, Kantola K, Hannah DM (2018) Stream temperature under contrasting riparian forest cover: understanding thermal dynamics and heat exchange processes. Science of the Total Environment 610–611, 1375-1389.
| Crossref | Google Scholar | PubMed |

Durbecq A, Jaunatre R, Buisson E, Cluchier A, Bischoff A (2020) Identifying reference communities in ecological restoration: the use of environmental conditions driving vegetation composition. Restoration Ecology 28, 1445–-1453.
| Crossref | Google Scholar |

Dutra VF, Alves-Araújo A, Carrijo TT (2015) Angiosperm Checklist of Espírito Santo: using electronic tools to improve the knowledge of an Atlantic Forest biodiversity hotspot. Rodriguésia 66, 1145-1152.
| Crossref | Google Scholar |

Eken G, Bennun L, Brooks TM, Darwall W, Fishpool LDC, Foster M, Knox D, Langhammer P, Matiku P, Radford E, Salaman P, Sechrest W, Smith ML, Spector S, Tordoff A (2004) Key biodiversity areas as site conservation targets. BioScience 54, 1110-1118.
| Crossref | Google Scholar |

Embrapa (1997) ‘Manual de métodos de análise de solo.’ 2nd edn. (Centro Nacional de Pesquisa de Solos: Rio de Janeiro, Brazil). Available at https://ainfo.cnptia.embrapa.br/digital/bitstream/item/169149/1/Manual-de-metodos-de-analise-de-solo-2-ed-1997.pdf

Embrapa (1999) ‘Manual de Análises Químicas de Solos, Plantas e Fertilizantes.’ (Ed. FC Silva). (Embrapa Informação Tecnológica: Brazil)

Felfili JM, Ribeiro JF, Fagg CW, Machado JWB (2000) Recuperação de matas de galeria. (Embrapa)

Fernandes GW, Goulart FF, Ranieri BD, Coelho MS, Dales K, Boesche N, Bustamante M, Carvalho FA, Carvalho DC, Dirzo R, Fernandes S, Galetti PM, Millan VEG, Mielke C, Ramirez JL, Neves A, Rogass C, Ribeiro SP, Scariot A, Soares-Filho B (2016a) Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Natureza & Conservação 14, 35-45.
| Crossref | Google Scholar |

Fernandes GW, Toma TSP, Angrisano P, Overbeck G (2016b) Challenges in the restoration of quartzitic and ironstone rupestrian grasslands. In ‘Ecology and conservation of mountaintop grasslands in Brazil’. (Ed. GW Fernandes) pp. 449–477. (Springer International Publishing: Cham, Switzerland) doi:10.1007/978-3-319-29808-5_19

Figueiredo JCG, Avila MA, Souza CS, Neves JGS, Tolentino GS, Oki Y, Azevedo IFP, Negreiros D, Viana JHM, Santos RM, Fonseca RS, Fernandes GW, Nunes YRF (2022) Relationship of woody species composition with edaphic characteristics in threatened riparian Atlantic Forest remnants in the upper Rio Doce basin, Brazil. Nordic Journal of Botany 2022, e03679.
| Crossref | Google Scholar |

Figueiredo JCG, Negreiros D, Ramos L, Paiva DC, Oki Y, Justino WS, Santos RM, Aguilar R, Nunes YRF, Fernandes GW (2024) Reference sites of threatened riverine Atlantic forest in upper Rio Doce watershed. Nature Conservation Research. Заповедная наука 9(1), 58-71.
| Google Scholar |

Fletcher C, Rooney J, Barbee M, Lim S-C, Richmond LB (2003) Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii. Journal of Coastal Research 106, 124.
| Google Scholar |

Gaston KJ, Davies RG, Orme CDL, Olson VA, Thomas GH, Ding T-S, Rasmussen PC, Lennon JJ, Bennett PM, Owens IPF, Blackburn TM (2007) Spatial turnover in the global avifauna. Proceedings of the Royal Society B: Biological Sciences 274, 1567-1574.
| Crossref | Google Scholar |

Gei M, Rozendaal DMA, Poorter L, et al. (2018) Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology & Evolution 2, 1104-1111.
| Crossref | Google Scholar | PubMed |

Gentry AH, Dodson C (1987) Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19, 149–-156.
| Crossref | Google Scholar |

Goebel PC, Wyse TC, Corace RG, III (2005) Determining reference ecosystem conditions for disturbed landscapes within the context of contemporary resource management issues. Journal of Forestry 103(7), 351-356.
| Crossref | Google Scholar |

Green JL, Ostling A (2003) Endemics–area relationships: the influence of species dominance and spatial aggregation. Ecology 84, 3090-3097.
| Crossref | Google Scholar |

Haugaasen T, Peres CA (2006) Floristic, edaphic and structural characteristics of flooded and unflooded forests in the lower Rio Purús region of central Amazonia, Brazil. Acta Amazonica 36, 25-35.
| Crossref | Google Scholar |

Heringer G, Villa PM, Neri AV (2020) Phytosociology in R: a routine to estimate phytosociological parameters. In ‘Aplicações da linguagem R em análises de vegetação’. (Eds ES Diniz, PM Villa) pp. 20–29. (Atena: Ponta Grossa, Brazil). doi:10.22533/at.ed.3552009033

Hsieh TC, Ma KH, Chao A (2014) CRAN – package iNEXT: iNterpolation and EXTrapolation for species diversity. R package v. 2.0. Available at http://chao.stat.nthu.edu.tw/blog/software-download.

Husson F, Josse J, Le S, Mazet J, Husson MF (2016) Package ‘factominer’. An R package. Available at https://cran.r-project.org/web/packages/FactoMineR/index.html

Jakovac CC, Meave JA, Bongers F, et al. (2022) Strong floristic distinctiveness across Neotropical successional forests. Science Advances 8(26), eabn1767.
| Crossref | Google Scholar |

Knothe G, Razon LF, Madulid DA, Agoo EMG, de Castro MEG (2016) Fatty acid profiles of some fabaceae seed oils. Journal of the American Oil Chemists’ Society 93, 1007-1011.
| Crossref | Google Scholar |

Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology 70(6), 966-979.
| Crossref | Google Scholar |

Leprieur F, Olden JD, Lek S, Brosse S (2009) Contrasting patterns and mechanisms of spatial turnover for native and exotic freshwater fish in Europe. Journal of Biogeography 36, 1899-1912.
| Crossref | Google Scholar |

Leprieur F, Tedesco PA, Hugueny B, Beauchard O, Dürr HH, Brosse S, Oberdorff T (2011) Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters 14, 325-334.
| Crossref | Google Scholar | PubMed |

Leprieur F, Albouy C, De Bortoli J, Cowman PF, Bellwood DR, Mouillot D (2012) Quantifying phylogenetic beta diversity: distinguishing between ‘True’ turnover of lineages and phylogenetic diversity gradients. PLoS ONE 7, e42760.
| Crossref | Google Scholar |

Lima RBDA, Marangon LC, Freire FJ, Feliciano ALP, Silva RKSD (2017) Potencial regenerativo de espécies arbóreas em fragmento de Mata Atlântica, Pernambuco, Brasil. Revista Verde de Agroecologia e Desenvolvimento Sustentável 12, 666.
| Crossref | Google Scholar |

Madeira BG, Espírito-Santo MM, Neto SDÂ, Nunes YR, Arturo Sánchez Azofeifa G, Wilson Fernandes G, Quesada M (2009) Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecology 201, 291-304.
| Crossref | Google Scholar |

MapBiomas (2023) Projeto MapBiomas [MapBiomas project] - Coleção [V. 7.0] da Série Anual de Mapas de Cobertura e Uso da Terra do Brasil. [In Portuguese] Available at http://plataforma.brasil.mapbiomas.org/analises-temporais

Marini L, Bertolli A, Bona E, Federici G, Martini F, Prosser F, Bommarco R (2013) Beta-diversity patterns elucidate mechanisms of alien plant invasion in mountains. Global Ecology and Biogeography 22, 450-460.
| Crossref | Google Scholar |

Melo AS, Rangel TFLVB, Diniz-Filho JAF (2009) Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32, 226-236.
| Crossref | Google Scholar |

Menino G, Nunes Y, Tolentino G, Santos R, Azevedo I, Veloso M, Fernandes G (2009) A regeneração natural da vegetação ciliar do rio Pandeiros como indicativo da futura composição da comunidade arbórea. Vol. 2. Boletim Técnico Científico Da Diretoria de Biodiversidade Do Instituto Estadual de Florestas–MG: MG Biota.

Menino GCO, Nunes YRF, Santos RM, Fernandes GW, Fernandes LA (2012) Environmental heterogeneity and natural regeneration in riparian vegetation of the Brazilian semi-arid region. Edinburgh Journal of Botany 69, 29-51.
| Crossref | Google Scholar |

Mesquita RCG, Ickes K, Ganade G, Williamson GB (2001) Alternative successional pathways in the Amazon Basin. Journal of Ecology 89, 528-537.
| Crossref | Google Scholar |

Metzger JP, Bustamante MMC, Ferreira J, Fernandes GW, Librán-Embid F, Pillar VD, Prist PR, Rodrigues RR, Veira ICG, Overbeck GE (2019) Why Brazil needs its legal reserves. Perspectives in Ecology and Conservation 17(3), 91-103.
| Crossref | Google Scholar |

Meynard CN, Devictor V, Mouillot D, Thuiller W, Jiguet F, Mouquet N (2011) Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography 20, 893-903.
| Crossref | Google Scholar |

Milhomem MEV, Araújo GM, Vale VSD (2013) Estrutura do estrato arbóreo e regenerativo de um fragmento de Floresta Estacional Semidecidual em Itumbiara, GO. Ciência Florestal 23, 679-690.
| Crossref | Google Scholar |

Miranda CDC, Donato AD, Figueiredo PHA, Bernini TA, Roppa C, Trece IB, Barros LO (2019) Levantamento fitossociológico como ferramenta para a restauração florestal da Mata Atlântica, no Médio Paraíba do Sul. Ciência Florestal 29, 1601-1613.
| Crossref | Google Scholar |

Morellato LP, Haddad CFB (2000) Introduction: the Brazilian Atlantic Forest. Biotropica 32, 786–-792.
| Crossref | Google Scholar |

Mueller-Dombois D, Ellenberg H (1974) ‘Aims and methods of vegetation ecology.’ (John Wiley & Sons: New York, NY, USA).

Oksanen J (2013) Vegan: ecological diversity. R project 368, 1-11.
| Google Scholar |

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O’Hara R, Simpson G, Solymos P, et al. (2016) Vegan: community ecology package. R Package version 2.4-1. Available at https://CRAN R-Project Org/Package=Vegan 280

Omachi CY, Siani SMO, Chagas FM, Mascagni ML, Cordeiro M, Garcia GD, Thompson CC, Siegle E, Thompson FL (2018) Atlantic Forest loss caused by the world’s largest tailing dam collapse (Fundão Dam, Mariana, Brazil). Remote Sensing Applications: Society and Environment 12, 30-34.
| Crossref | Google Scholar |

Pare S, Savadogo P, Tigabu M, Oden PC, Ouadba JM (2009) Regeneration and spatial distribution of seedling populations in Sudanian dry forests in relation to conservation status and human pressure. Tropical Ecology 50, 339.
| Google Scholar |

Pennisi E (2006) Rare tree species thrive in local neighborhoods. Science 311, 452-453.
| Crossref | Google Scholar | PubMed |

R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.r-project.org [Accessed 22 April 2023]

Ramos L, Negreiros D, Ferreira BSS, Figueiredo JCG, Paiva DC, Oki Y, Justino WDS, Santos RMD, Aguilar R, Nunes YR, Fernandes GW (2023) Strong relationships between soil and vegetation in reference ecosystems of a riparian Atlantic rainforest in the upper Doce River watershed, southeastern Brazil. iForest-Biogeosciences and Forestry 16, 226-233.
| Crossref | Google Scholar |

Ramos L, Negreiros D, Goulart FF, Figueiredo JCG, Kenedy-Siqueira W, Toma TSP, Justino WS, Maia RA, De Oliveira JT, Oki Y, Barbosa M, Ramiro A, Santos RM, Dias HM, Nunes YR, Fernandes GW (2024) Dissimilar forests along the Rio Doce watershed call for multiple restoration references to avoid biotic homogenization. Science of the Total Environment 930, 172720.
| Crossref | Google Scholar | PubMed |

Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA, Mittermeier RA (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation 16, 208-214.
| Crossref | Google Scholar |

Rocha AES, Silva MFF (2002) ‘Catálogo de espécies de floresta secundária.’ (Museu Paraense Emílio Goeldi)

Rodrigues RR, Lima RAF, Gandolfi S, Nave GA (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biological Conservation 142, 1242-1251.
| Crossref | Google Scholar |

Rozendaal DM, Bongers F, Aide TM, et al. (2019) Biodiversity recovery of Neotropical secondary forests. Science Advances 5(3), eaau3114.
| Crossref | Google Scholar |

Salles JC, Schiavini I (2007) Estrutura e composição do estrato de regeneração em um fragmento florestal urbano: implicações para a dinâmica e a conservação da comunidade arbórea. Acta Botanica Brasilica 21, 223-233.
| Crossref | Google Scholar |

Schaefer CEGR, dos Santos EE, de Souza CM, Neto JD, Fernandes Filho EI, Delpupo C (2015) Cenário histórico, quadro físiográfico e estratégias para recuperação ambiental de Tecnossolos nas áreas afetadas pelo rompimento da barragem do Fundão, Mariana, MG. Arquivos Do Museu de História Natural e Jardim Botânico 24(1–2), 104-135 Available at https://periodicos.ufmg.br/index.php/mhnjb/article/view/6263/3852 [In Portuguese].
| Google Scholar |

Sfenthourakis S, Panitsa M (2012) From plots to islands: species diversity at different scales. Journal of Biogeography 39, 750-759.
| Crossref | Google Scholar |

Silva RKS, Feliciano ALP, Marangon LC, Lima RBA (2010) Florística e sucessão ecológica da vegetação arbórea em área de nascente de um fragmento de mata atlântica, Pernambuco. Revista Brasileira de Ciências Agrárias - Brazilian Journal of Agricultural Sciences 5, 550-559.
| Crossref | Google Scholar |

Soininen J, Heino J, Wang J (2018) A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography 27(1), 96-109.
| Crossref | Google Scholar |

The Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 1-20.
| Crossref | Google Scholar |

Toma TSP, Overbeck GE, Mendonça MS, Jr, Fernandes GW (2023) Optimal references for ecological restoration: the need to protect references in the tropics. Perspectives in Ecology and Conservation 21(1), 25–-32.
| Crossref | Google Scholar |

van der Sande MT, Powers JS, Kuyper TW, Norden N, Salgado-Negret B, Almeida JS (2023) Soil resistance and recovery during neotropical forest succession. Philosophical Transactions of the Royal Society B 378, 20210074.
| Crossref | Google Scholar |

Veloso MDDM, Nunes YRF, Azevedo IFP, Rodrigues PMS, Fernandes LA, Santos RMD, Fernandes GW, Pereira JAA (2014) Floristic and structural variations of the arboreal community in relation to soil properties in the Pandeiros river riparian forest, Minas Gerais, Brazil. Interciencia 39, 628–636

Webster CR, Dickinson YL, Burton JI, Frelich LE, Jenkins MA, Kern CC, Raymond P, Saunders MR, Walters MB, Willis JL (2018) Promoting and maintaining diversity in contemporary hardwood forests: confronting contemporary drivers of change and the loss of ecological memory. Forest Ecology and Management 421, 98-108.
| Crossref | Google Scholar |

Weidlich EWA, Flórido FG, Sorrini TB, Brancalion PH (2020) Controlling invasive plant species in ecological restoration: a global review. Journal of Applied Ecology 57(9), 1806-1817.
| Crossref | Google Scholar |

Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21(2–3), 213–-251.
| Google Scholar |

Zar J (1999) ‘Biostatistical analysis.’ (Prentice Hall: Hoboken, NJ, USA).

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) ‘Mixed effects models and extensions in ecology with R,’ vol. 574. (Springer: New York, NY, USA).