Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Evidence of inter-sectional chloroplast capture in Corymbia among sections Torellianae and Maculatae

Adam Healey A B , David J. Lee C , Agnelo Furtado A and Robert J. Henry A D
+ Author Affiliations
- Author Affiliations

A Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld 4072, Australia.

B Present address: HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.

C University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Qld 4558, Australia.

D Corresponding author. Email: robert.henry@uq.edu.au

Australian Journal of Botany 66(5) 369-378 https://doi.org/10.1071/BT18028
Submitted: 7 February 2018  Accepted: 10 July 2018   Published: 30 August 2018

Abstract

Chloroplast capture through hybridisation and introgression is well described within Eucalyptus. Despite the propensity of the Corymbia genus (eucalypts) to form hybrids from wide crosses, description of chloroplast capture in Corymbia has, until recently, been limited. In this study our aim was to investigate evidence of intersectional chloroplast capture between sections Torellianae and Maculatae. Using whole-genome next-generation sequencing data, the complete chloroplast genomes were assembled from four Corymbia taxa: Corymbia citriodora subspecies citriodora (Hook.) K.D.Hill & L.A.S.Johnson, Corymbia citriodora subspecies variegata (F.Muell.) A.R.Bean & M.W.McDonald, Corymbia henryi (S.T.Blake) K.D.Hill & L.A.S.Johnson, and Corymbia torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson, represented by eight genotypes. Phylogenetic analysis and comparison among Corymbia chloroplast genomes and nuclear external transcribed spacer (ETS) sequences revealed chloroplast capture among Corymbia species across distinct sections Torellianae and Maculatae within subgenus Blakella. Reticulate evolution, along with Eucalyptus, likely extends into Corymbia as evidenced by incongruent plastid and nuclear phylogenetic trees, suggestive of its importance of hybridisation and introgression during the evolution of eucalypts.

Additional keywords: Eucalyptus, introgression, phylogeny, reticulate evolution, whole chloroplast.


References

Abasolo M, Lee D, Shepherd M (2012) Identification of intersectional Corymbia hybrids based on seedling morphology improves with parental divergence. Forest Ecology and Management 279, 189–202.
Identification of intersectional Corymbia hybrids based on seedling morphology improves with parental divergence.Crossref | GoogleScholarGoogle Scholar |

Avise JC (1986) Mitochondrial DNA and the evolutionary genetics of higher animals. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 312, 325–342.
Mitochondrial DNA and the evolutionary genetics of higher animals.Crossref | GoogleScholarGoogle Scholar |

Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10, 449–463.
Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae).Crossref | GoogleScholarGoogle Scholar |

Barbour R. C., Crawford A. C., Henson M., Lee D. J., Potts B. M., Shepherd M. (2008) The risk of pollen-mediated gene flow from exotic Corymbia plantations into native Corymbia populations in Australia. For. Ecol. Manage. 256, 1–19.
The risk of pollen-mediated gene flow from exotic Corymbia plantations into native Corymbia populations in Australia.Crossref | GoogleScholarGoogle Scholar |

Bayly MJ, Ladiges PY (2007) Divergent paralogues of ribosomal DNA in eucalypts (Myrtaceae). Molecular Phylogenetics and Evolution 44, 346–356.
Divergent paralogues of ribosomal DNA in eucalypts (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Bayly MJ, Udovicic F, Gibbs AK, Parra-O C, Ladiges PY (2008) Ribosomal DNA pseudogenes are widespread in the eucalypt group (Myrtaceae): implications for phylogenetic analysis. Cladistics 24, 131–146.
Ribosomal DNA pseudogenes are widespread in the eucalypt group (Myrtaceae): implications for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Bayly MJ, Rigault P, Spokevicius A, Ladiges PY, Ades PK, Anderson C, Bossinger G, Merchant A, Udovicic F, Woodrow IE, Tibbits J (2013) Chloroplast genome analysis of Australian eucalypts – Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Molecular Phylogenetics and Evolution 69, 704–716.
Chloroplast genome analysis of Australian eucalypts – Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Boland D, Brooker M, Chippendale G, Hall N, Hyland B, Johnson R, et al. (2006) ‘Forest trees of Australia.’ (CSIRO Publishing: Melbourne, Vic.)

Brooker M (2000) A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Australian Systematic Botany 13, 79–148.
A new classification of the genus Eucalyptus L’Her. (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Buys MH, Flint HJ, Miller EM, Yao H, Caird AR, Ganley RJ (2016) Preparing for the invasion: efficacy of DNA barcoding to discern the host range of myrtle rust (Puccinia psidii) among species of Myrtaceae. Forestry: An International Journal of Forest Research 89, 263–70.
Preparing for the invasion: efficacy of DNA barcoding to discern the host range of myrtle rust (Puccinia psidii) among species of Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Byrne M, Moran G, Tibbits W (1993) Restriction map and maternal inheritance of chloroplast DNA in Eucalyptus nitens. Journal of Heredity 84, 218–220.
Restriction map and maternal inheritance of chloroplast DNA in Eucalyptus nitens.Crossref | GoogleScholarGoogle Scholar |

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar |

Dickinson GR, Lee DJ, Wallace HM (2012) The influence of pre- and post-zygotic barriers on interspecific Corymbia hybridization. Annals of Botany 109, 1215–1226.
The influence of pre- and post-zygotic barriers on interspecific Corymbia hybridization.Crossref | GoogleScholarGoogle Scholar |

Dickinson GR, Wallace HM, Lee DJ (2013) Reciprocal and advanced generation hybrids between Corymbia citriodora and C. torelliana: forestry breeding and the risk of gene flow. Annals of Forest Science 70, 1–10.
Reciprocal and advanced generation hybrids between Corymbia citriodora and C. torelliana: forestry breeding and the risk of gene flow.Crossref | GoogleScholarGoogle Scholar |

Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Molecular Biology and Evolution 11, 769–777.

Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley W, Külheim C, et al (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genetics & Genomes 8, 463–508.
Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus.Crossref | GoogleScholarGoogle Scholar |

Griffin A, Burgess I, Wolf L (1988) Patterns of natural and manipulated hybridization in the genus Eucalyptus L’Herit. – a review. Australian Journal of Botany 36, 41–66.
Patterns of natural and manipulated hybridization in the genus Eucalyptus L’Herit. – a review.Crossref | GoogleScholarGoogle Scholar |

Healey A, Furtado A, Cooper T, Henry RJ (2014) Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10, 21
Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species.Crossref | GoogleScholarGoogle Scholar |

Hill KD, Johnson LA (1995) Systematic studies in the eucalypts 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae). Telopea 6, 185–504.
Systematic studies in the eucalypts 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar |

Jackson H, Steane D, Potts B, Vaillancourt R (1999) Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae). Molecular Ecology 8, 739–751.
Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar |

King R (2004) Spatial structure and population genetic variation in a eucalypt species complex. PhD thesis, Australian School of Environmental Studies, Griffith University, Brisbane, Qld., Australia.

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Research 22, 568–576.
VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing.Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Whiffin T (1993) Taxonomic revision of Eucalyptus alpina s.l. and recognition of three new species, E. victoriana, E. serraensis, and E. verrucosa. Australian Systematic Botany 6, 365–370.
Taxonomic revision of Eucalyptus alpina s.l. and recognition of three new species, E. victoriana, E. serraensis, and E. verrucosa.Crossref | GoogleScholarGoogle Scholar |

Lee DJ (2007) Achievements in forest tree genetic improvement in Australia and New Zealand 2: Development of Corymbia species and hybrids for plantations in eastern Australia. Australian Forestry 70, 11–16.
Achievements in forest tree genetic improvement in Australia and New Zealand 2: Development of Corymbia species and hybrids for plantations in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Lee D, Huth J, Brawner JT, Dickinson GR (2009) Comparative performance of Corymbia hybrids and parental species in subtropical Queensland and implications for breeding and deployment. Silvae Genetica 58, 205–212.
Comparative performance of Corymbia hybrids and parental species in subtropical Queensland and implications for breeding and deployment.Crossref | GoogleScholarGoogle Scholar |

Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S (2014) Plant DNA barcoding: from gene to genome. Biological Reviews of the Cambridge Philosophical Society 90, 1–10.
Plant DNA barcoding: from gene to genome.Crossref | GoogleScholarGoogle Scholar |

Linder CR, Rieseberg LH (2004) Reconstructing patterns of reticulate evolution in plants. American Journal of Botany 91, 1700–1708.
Reconstructing patterns of reticulate evolution in plants.Crossref | GoogleScholarGoogle Scholar |

McDonald M, Bean A (2000) A new combination in Corymbia ‘section Politaria’: C. citriodora subsp. variegata (Myrtaceae). Austrobaileya 5, 735–736.

McKinnon GE, Steane Da, Potts BM, Vaillancourt RE (1999) Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtacae). American Journal of Botany 86, 1038–1046.
Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtacae).Crossref | GoogleScholarGoogle Scholar |

Mckinnon GE, Vaillancourt RE, Jackson HD, Potts BM, Mckinnon E, Rene E (2001) Chloroplast sharing in the Tasmanian eucalypts. Evolution 55, 703–711.

McKinnon GE, Jordan GJ, Vaillancourt RE, Steane DA, Potts BM (2004) Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 275–284.
Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts.Crossref | GoogleScholarGoogle Scholar |

McVey MG (2004) Population genetics of Corymbia torelliana (Cadagi). Honours thesis. University of the Sunshine Coast, Forest Industries Research Centre, Sippy Downs, Qld, Australia.

Myburg AA, Potts BM, Marques CM, Kirs, M, Gion J, and Grima-pettenatti. (2007) ‘Eucalypts’. In ‘Genome mapping and molecular breeding in plants. Vol. 7’. (Ed. CR Kole) pp. 115–160. (Springer: New York)

Nakhleh L, Warnow T, Linder CR, St John K (2005) Reconstructing reticulate evolution in species-theory and practice. Journal of Computational Biology 12, 796–811.
Reconstructing reticulate evolution in species-theory and practice.Crossref | GoogleScholarGoogle Scholar |

Nevill PG, Despres T, Bayly MJ, Bossinger G, Ades PK (2014) Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances. Tree Genetics & Genomes 10, 1079–1092.
Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances.Crossref | GoogleScholarGoogle Scholar |

Ochieng JW, Henry RJ, Baverstock PR, Steane DA, Shepherd M (2007) Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Molecular Phylogenetics and Evolution 44, 752–764.
Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs.Crossref | GoogleScholarGoogle Scholar |

Ochieng J, Shepherd M, Baverstock PR, Nikles G, Lee DJ, Henry RJ (2008) Genetic variation within two sympatric spotted gum eucalypts exceeds between taxa variation. Silvae Genetica 57, 249–256.
Genetic variation within two sympatric spotted gum eucalypts exceeds between taxa variation.Crossref | GoogleScholarGoogle Scholar |

Ochieng JW, Shepherd M, Baverstock PR, Nikles G, Lee DJ, Henry RJ (2010) Two sympatric spotted gum species are molecularly homogeneous. Conservation Genetics 11, 45–56.
Two sympatric spotted gum species are molecularly homogeneous.Crossref | GoogleScholarGoogle Scholar |

Parra-O C, Bayly M, Udovicic F, Ladiges P (2006) ETS sequences support the monophyly of the eucalypt genus Corymbia (Myrtaceae). Taxon 55, 653–663.
ETS sequences support the monophyly of the eucalypt genus Corymbia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Parra-O C, Bayly M, Drinnan A (2009) Phylogeny, major clades and infrageneric classification of Corymbia (Myrtaceae), based on nuclear ribosomal DNA and morphology. Australian Systematic Botany 22, 384–399.
Phylogeny, major clades and infrageneric classification of Corymbia (Myrtaceae), based on nuclear ribosomal DNA and morphology.Crossref | GoogleScholarGoogle Scholar |

Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proceedings of the National Academy of Sciences of the United States of America 94, 9996–10001.
Chloroplast DNA footprints of postglacial recolonization by oaks.Crossref | GoogleScholarGoogle Scholar |

Pollock LJ, Bayly MJ, Nevill PG, Vesk PA (2013) Chloroplast DNA diversity associated with protected slopes and valleys for hybridizing Eucalyptus species on isolated ranges in south-eastern Australia. Journal of Biogeography 40, 155–167.
Chloroplast DNA diversity associated with protected slopes and valleys for hybridizing Eucalyptus species on isolated ranges in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Pryor L, Johnson L (1971) ‘A classification of the eucalypts.’ (Australian National University: Canberra, ACT, Australia)

Rieseberg L (1991) Homoploid reticulate evolution in Helianthus (Asteraceae): evidence from ribosomal genes. American Journal of Botany 78, 1218–1237.
Homoploid reticulate evolution in Helianthus (Asteraceae): evidence from ribosomal genes.Crossref | GoogleScholarGoogle Scholar |

Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences of the United States of America 92, 6813–6817.
Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution.Crossref | GoogleScholarGoogle Scholar |

Schuster TM, Setaro SD, Tibbits JFG, Batty EL, Fowler RM, McLay TGB, et al (2018) Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae). PloS one 13, e0195034
Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Sedgley M, Delaporte K (2004) Breeding of eucalypt bud and flower lines. Rural Industries Research and Development Corporation, Publication 04/163. Canberra, ACT, Australia.

Shepherd M, Lee DJ (2016) Gene flow from Corymbia hybrids in northern New South Wales. Forest Ecology and Management 362, 205–217.
Gene flow from Corymbia hybrids in northern New South Wales.Crossref | GoogleScholarGoogle Scholar |

Shepherd M, Kasem S, Ablett G (2008) Genetic structuring in the spotted gum complex (genus Corymbia, section Politaria). Australian Systematic Botany 21, 15–25.
Genetic structuring in the spotted gum complex (genus Corymbia, section Politaria).Crossref | GoogleScholarGoogle Scholar |

Shepherd M, Bartle J, Lee D, Brawner J, Bush D, Turnbull P, et al (2011) Eucalypts as a biofuel feedstock. Biofuels 2, 639–657.
Eucalypts as a biofuel feedstock.Crossref | GoogleScholarGoogle Scholar |

Shepherd M, Henson M, Lee DJ (2012) Revisiting genetic structuring in spotted gums (genus Corymbia section Maculatae) focusing on C. maculata, an early diverged, insular lineage. Tree Genetics & Genomes 8, 137–147.
Revisiting genetic structuring in spotted gums (genus Corymbia section Maculatae) focusing on C. maculata, an early diverged, insular lineage.Crossref | GoogleScholarGoogle Scholar |

Slee A, Brooker M, Duffy S, West J (2006) ‘EUCLID: eucalypts of Australia.’ (3rd edn) (CSIRO Publishing: Melbourne) [CD ROM]

Southerton SG, Birt P, Porter J, Ford Ha (2004) Review of gene movement by bats and birds and its potential significance for eucalypt plantation forestry. Australian Forestry 67, 44–53.
Review of gene movement by bats and birds and its potential significance for eucalypt plantation forestry.Crossref | GoogleScholarGoogle Scholar |

Steane D, Byrne M, Vaillancourt R, Potts B (1998) Chloroplast DNA polymorphism signals complex interspecific interactions in Eucalyptus (Myrtaceae). Australian Systematic Botany 11, 25–40.
Chloroplast DNA polymorphism signals complex interspecific interactions in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Steane DA, McKinnon GE, Vaillancourt RE, Potts BM (1999) ITS sequence data resolve higher level relationships among the eucalypts. Molecular Phylogenetics and Evolution 12, 215–223.
ITS sequence data resolve higher level relationships among the eucalypts.Crossref | GoogleScholarGoogle Scholar |

Steane D, Nicolle D, McKinnon GE, Vaillancourt RE, Potts BM (2002) Higher-level relationships among the eucalypts are resolved by ITS-sequence data. Australian Systematic Botany 15, 49–62.
Higher-level relationships among the eucalypts are resolved by ITS-sequence data.Crossref | GoogleScholarGoogle Scholar |

Swofford, D. L. (2003) ‘PAUP*: phylogenetic analysis using parsimony, ver. 4.0 b10.’ (Sinauer Associates: Sunderland, MA, USA)

Tsitrone A, Kirkpatrick M, Levin D (2003) A model for chloroplast capture. Evolution (New York) 57, 1776–1782.

Udovicic F, Ladiges P (2000) Informativeness of nuclear and chloroplast DNA regions and the phylogeny of the eucalypts and related genera (Myrtaceae). Kew Bulletin 55, 633–645.
Informativeness of nuclear and chloroplast DNA regions and the phylogeny of the eucalypts and related genera (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Udovicic F, McFadden G, Ladiges P (1995) Phylogeny of Eucalyptus and Angophora based on 5S rDNA spacer sequence data. Molecular Phylogenetics and Evolution 4, 247–256.
Phylogeny of Eucalyptus and Angophora based on 5S rDNA spacer sequence data.Crossref | GoogleScholarGoogle Scholar |

Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252–3255.
Automatic annotation of organellar genomes with DOGMA.Crossref | GoogleScholarGoogle Scholar |