Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Differences in trace element profiles of three subspecies of Silene parnassica (Caryophyllaceae) growing on ophiolitic substrate

Sanja Đurović A D , Ksenija Jakovljević A , Uroš Buzurović B , Marjan Niketić B , Nevena Mihailović C and Gordana Tomović A
+ Author Affiliations
- Author Affiliations

A University of Belgrade, Institute of Botany and Botanical Garden ‘Jevermovac’, Takovska 43, 11000 Belgrade, Serbia.

B Natural History Museum, Njegoševa 51, 11000 Belgrade, Serbia.

C Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Zemun, Serbia.

D Corresponding author. Email: sdjurovic@bio.bg.ac.rs

Australian Journal of Botany 64(3) 235-245 https://doi.org/10.1071/BT15166
Submitted: 14 July 2015  Accepted: 20 March 2016   Published: 3 May 2016

Abstract

The aim of the present study was to compare trace element profiles and the differences in uptake and translocation of trace elements in plants from five populations (three from Greece and two from Serbia) belonging to three subspecies of Silene parnassica Boiss. & Sprun. growing on ophiolitic substrates. For comparison of the subspecies, bioconcentration and translocation factors were used, as well as Spearman’s rank correlation coefficients for concentrations of elements in root and shoot samples. Chemical characteristics of the soil samples (pH, organic C, P2O5, K2O, Ca, Fe, Mg, Mn, Ni, Zn, Cu, Cr, Co, Cd and Pb) and plant samples (P2O5, K2O, Ca, Fe, Mg, Mn, Ni, Zn, Cu, Cr, Co, Cd and Pb) were determined, as well as bioconcentration and translocation factors and correlation matrices. All the three subspecies acted as strong Ni accumulators, with equal concentrations of Ni in roots and shoots, the values being several times higher than 100 mg kg–1, exceeding concentrations of available Ni in the soil. Concentrations of Cu and Cr in the aboveground plant tissues in samples from three localities were several times higher than expected, even for plants growing on metalliferous soils, exceeding, by multiple times, the available concentrations in the soil samples.

Additional keywords: ophiolites, strong accumulators.


References

Adriano DC (2001) ‘Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals.’ (Springer-Verlag: New York, NY)

Asch K (2005) ‘The 1 : 5 million international geological map of Europe and adjacent areas.’ Bundesanstalt für Geowissenschaften und Rohstoffe. (Federal Institute for Geosciences and Natural Resources: Hannover, Germany)

Babalonas D, Reeves R (1988) Kationen-Akkumulation durch Silene-Arten auf Serpentinboden Griechenlands. Phyton (Austria) 28, 229–236.

Baker AJM (1978) Ecophysiological aspects of zinc tolerance in Silene maritima With. New Phytologist 80, 635–642.
Ecophysiological aspects of zinc tolerance in Silene maritima With.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXkslejsbY%3D&md5=b8650bfc9bb211f731763662861e02b2CAS |

Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3, 643–654.
Accumulators and excluders-strategies in the response of plants to heavy metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtlemsb8%3D&md5=e6d096bdfed4e2633707e8ee562812d8CAS |

Baker AJM, Brooks RR, Pease AJ, Malaisse F (1983) Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaire. Plant and Soil 73, 377–385.
Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaire.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXjsleh&md5=f4147712c134697a8ea9bb1fbe8e1cf0CAS |

Baker AJM, Proctor J, van Balgooy MMJ, Reeves RD (1992) Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of the Philippines. In ‘The vegetation of ultramafic (serpentine) soils: proceedings of the first international conference on serpentine ecology’. (Eds AJM Baker, J Proctor, RD Reeves) pp. 291–304. (Intercept Ltd.: Andover, UK)

Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulçe S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Botanica Serbica 34, 3–14.

Bringezu K, Lichtenberger O, Leopold I, Neumann D (1999) Heavy metal tolerance of Silene vulgaris. Journal of Plant Physiology 154, 536–546.
Heavy metal tolerance of Silene vulgaris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVCju7o%3D&md5=be3a7fbd4a7158fdf3af25bcc8afd5bcCAS |

Brooks RR (1987) ‘Serpentine and its vegetation: a multidisciplinary approach.’ (Dioscorides Press: Portland, OR)

Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7, 49–57.
Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkt1KhsL8%3D&md5=1578ac4b84dcd67ba9778f1cb7859cf1CAS |

Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum L. (Cruciferae). Proceedings of the Royal Society of London. Series B, Biological Sciences 203, 387–403.
Hyperaccumulation of nickel by Alyssum L. (Cruciferae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtVSisbk%3D&md5=0b56e88a83d1662299fa46218368d578CAS |

Chen PS, Toribara TT, Warner H (1956) Microdetermination of phosphorus. Analytical Chemistry 28, 1756–1758.
Microdetermination of phosphorus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXitFSjug%3D%3D&md5=2ed603d8dee5234ecd74301d585c6d3aCAS |

Colzi I, Arnetoli M, Gallo A, Doumett S, Del Bubba M, Pignattelli S, Gonnelli C (2012) Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environmental and Experimental Botany 78, 91–98.
Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFGit7k%3D&md5=200a372ff021ceee46f7b28cfc35c8adCAS |

Colzi I, Rocchi S, Rangoni M, Del Bubba M, Gonnelli C (2014) Specificity of metal tolerance and use of excluder metallophytes for the phytostabilization of metal polluted soils: the case of Silene paradoxa L. Environmental Science and Pollution Research International 21, 10960–10969.
Specificity of metal tolerance and use of excluder metallophytes for the phytostabilization of metal polluted soils: the case of Silene paradoxa L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptl2lsLo%3D&md5=c0585281a1645c9f3a65146d31ff7e0bCAS | 24888612PubMed |

Cui S, Zhou Q, Chao L (2007) Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environmental Geology 51, 1043–1048.
Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVyjtQ%3D%3D&md5=12545f7b352b02eb58ddd8f89944014eCAS |

Davis RD, Beckett PHT, Wollan E (1978) Critical levels of twenty potentially toxic elements in young spring barley. Plant and Soil 49, 395–408.
Critical levels of twenty potentially toxic elements in young spring barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtlWmt7o%3D&md5=eb41f316087013eab8db4218a5b9a807CAS |

Duvigneaud P, Smet SDD, Dewit J, Van Bockstal L, Siebens D, Timperman J (1963) Études sur la végétation du Katanga et de ses sols métalliféres: réalisées sous l’égide du Fonds National de la Recherche Scientifique avec l’aide de l’Union Minière du Haut-Katanga. Communication No 7. Cuivre et végétation au Katanga. Bulletin de la Société Royale de Botanique de Belgique/Bulletin van de Koninklijke Belgische Botanische Vereniging 96, 93–231.

Egnér H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor-und Kaliumbestimmung. Kungliga Lantbrukshögskolans Annaler 26, 199–215.

Epstein E (1972) ‘Mineral nutrition of plants: principles and perspectives.’ (John Wiley & Sons: London)

Ernst WH, Nelissen HJ, Ten Bookum WM (2000) Combination toxicology of metal-enriched soils: physiological responses of a Zn-and Cd-resistant ecotype of Silene vulgaris on polymetallic soils. Environmental and Experimental Botany 43, 55–71.
Combination toxicology of metal-enriched soils: physiological responses of a Zn-and Cd-resistant ecotype of Silene vulgaris on polymetallic soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVGisA%3D%3D&md5=94c2f2bb114d690479f64fffcc1417e7CAS |

FAO (1974) ‘The Euphrates pilot irrigation project. Methods of soil analysis. Gadeb Soil Laboratory (a laboratory manual).’ (FAO: Rome)

Gasser UG, Juchler SJ, Sticher H (1994) Chemistry and speciation of soil water from serpentinitic soils: importance of coloids in the transport of Cr, Fe, Mg and Ni. Soil Science 158, 314–322.
Chemistry and speciation of soil water from serpentinitic soils: importance of coloids in the transport of Cr, Fe, Mg and Ni.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1ans7Y%3D&md5=3418bec1ab61fb008e22c9c75ec1dd44CAS |

Gola G (1910) ‘Saggio di una teoria osmotica dell’edafismo.’ (Tipografia E. Voghera: Roma, Italy)

Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiologia Plantarum 113, 507–514.
Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVSjsA%3D%3D&md5=cba30b711baaf88a7fe6177a13904ca5CAS |

Greger M (1999) Metal availability and bioconcentration in plants. In ‘Heavy metal stress in plants.’ (Eds MNV Prasad, J Hagemeyer) pp. 1–27. (Springer: Berlin)

Greuter W (1997) Silene L. In ‘Flora Hellenica. Vol. 1’. (Eds A Strid, K Tan) pp. 239–323. (Koeltz, Scientific Books: Koenigstein, Germany)

Hobbs RJ, Streit B (1986) Heavy metal concentrations in plants growing on a copper mine spoil in the Grand Canyon, Arizona. American Midland Naturalist 115, 277–281.
Heavy metal concentrations in plants growing on a copper mine spoil in the Grand Canyon, Arizona.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktVWru7w%3D&md5=265779b67ea96a08932b4bebe9cb0873CAS |

ISO 11047 (1998) ‘Soil quality: determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc. Flame and electrothermal atomic absorption spectrometric methods.’ (ISO: Geneva, Switzerland)

ISO 11466 (1995) ‘International standard. Soil quality: extraction of trace elements soluble in aqua regia, 03-01.’ (International Organization for Standardization: Geneva, Switzerland)

ISO 6636/2 (1981) ‘International standard. Fruits, vegetables and derived products: determination of zinc content, part 2: atomic absorption spectrometric method.’ (International Organization for Standardization: Geneva, Switzerland)

Jakovljević K, Buzurović U, Andrejić G, Đurović S, Niketić M, Mihailović N, Tomović G (2015) Trace elements contents and accumulation in soils and plant species Goniolimon tataricum (L.) Boiss. (Plumbaginaceae) from the ultramafic and dolomitic substrates of the central Balkans. Carpathian Journal of Earth and Environmental Sciences 10, 147–160.

Kabata-Pendias A (2011) ‘Trace elements in soils and plants.’ (CRC Press: Boca Raton, FL)

Kazakou E, Adamidis GC, Baker AJ, Reeves RD, Godino M, Dimitrakopoulos PG (2010) Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance. Plant and Soil 332, 369–385.
Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlGhur4%3D&md5=e9dee92d797c5ddeed0aeb6d618940e8CAS |

Kruckeberg AR (1967) Ecotypic response to ultramafic soils by some plant species of northwestern United States. Brittonia 19, 133–151.
Ecotypic response to ultramafic soils by some plant species of northwestern United States.Crossref | GoogleScholarGoogle Scholar |

Kruckeberg AR (1984) California’s serpentine. Fremontia 11, l–17.

Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochina LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany 51, 71–79.
Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpslKjtA%3D%3D&md5=238349b277cd93d3ef9a7dc10a6c38acCAS | 10938797PubMed |

Lefèbvre C, Vernet P (1990) Microevolutionary processes on contaminated deposits. In ‘Heavy metal tolerance in plants: evolutionary aspects’. (Ed. J Shaw) pp. 286–297. (CRC Press: Boca Raton, FL)

Liu X, Gao Y, Khan S, Duan G, Chen A, Ling L, Wu X (2008) Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan. Journal of Environmental Sciences (China) 20, 1469–1474.
Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSksLs%3D&md5=45cf16f183acc9776b185accc6b1d6f6CAS |

Llugany M, Lombini A, Poschenrieder C, Dinelli E, Barceló J (2003) Different mechanisms account for enhanced copper resistance in Silene armeria ecotypes from mine spoil and serpentine sites. Plant and Soil 251, 55–63.
Different mechanisms account for enhanced copper resistance in Silene armeria ecotypes from mine spoil and serpentine sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlKgtLs%3D&md5=95a722731ef1f375cb2aedc0d0782ab9CAS |

Lombini A, Dinelli E, Llugany M, Poschenrieder C, Barcelo J (2005) Differences in mineral nutrition and copper resistance between ecotypes of Silene armeria L. Plants from serpentine and a non serpentine sites. Revue valdotaine d’histoire naturelle 58, 103–119.

Macnair MR (2003) The hyperaccumulation of metals by plants. Advances in Botanical Research 40, 63–105.
The hyperaccumulation of metals by plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotl2lsA%3D%3D&md5=a082d39347e1a1ea40537e538d1dfa08CAS |

Malik RN, Husain SZ, Nazir I (2010) Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pakistan Journal of Botany 42, 291–301.

McGrath D (1996) Application of single and sequential extraction procedures to polluted and unpolluted soils. The Science of the Total Environment 178, 37–44.
Application of single and sequential extraction procedures to polluted and unpolluted soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslKktb8%3D&md5=88d55428dec7715cea52af562947389fCAS |

McKeague JA (1978) ‘Manual on soil sampling and methods of analysis.’ (Canadian Society of Soil Science: Ottawa, ON, Canada)

Mertz W, Angino EE, Cannon HL, Hambidge KM, Voors AW (1974) Chromium. In ‘US National Committee for Geochemistry. Subcommittee on the Geochemical Environment. Geochemistry and the Environment. Vol. I. The relation of selected trace elements to health and disease’. (Ed. W Mertz) pp. 29–35. (National Academy of Sciences: Washington, DC)

Obratov-Petković D, Bjedov I, Belanović S (2008) The content of heavy metals in the leaves of Hypericum perforatum L. on serpentinite soils in Serbia. Glasnik Šumarskog fakulteta 98, 143–153.
The content of heavy metals in the leaves of Hypericum perforatum L. on serpentinite soils in Serbia.Crossref | GoogleScholarGoogle Scholar |

Page V, Feller URS (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Annals of Botany 96, 425–434.
Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGltr3L&md5=4c77f39d6da619a336be9b3f70f4018cCAS | 15965269PubMed |

Pais I, Jones JB Jr (2000) ‘The handbook of trace elements.’ (CRC Press: Boca Raton, FL)

Pavlova D, Karadjova I (2012) Chemical analysis of Teucrium species (Lamiaceae) growing on serpentine soils in Bulgaria. Journal of Plant Nutrition and Soil Science 175, 891–899.
Chemical analysis of Teucrium species (Lamiaceae) growing on serpentine soils in Bulgaria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsleks7bP&md5=ce10c3ba82cb02d76c49f9a4856b6c5dCAS |

Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Critical Reviews in Plant Sciences 21, 539–566.
The genetic basis of metal hyperaccumulation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlKitrY%3D&md5=0608f49e41cffcb4999b24c2005b188dCAS |

Prasad MNV (1997) Trace elements. In ‘Plant ecophysiology’. (Ed. MNV Prasad) pp. 207–249. (Wiley: New York, NY)

Proctor J (1999) Toxins, nutrient shortages and droughts: the serpentine challenge. Trends in Ecology & Evolution 14, 334–335.
Toxins, nutrient shortages and droughts: the serpentine challenge.Crossref | GoogleScholarGoogle Scholar |

QGIS Development Team (2014) ‘QGIS geographic information system.’ Open Source Geospatial Foundation Project. Available at http://qgis.osgeo.org [Verified 25 February 2015]

Reeves R (1992) Hyperaccumulation of nickel by serpentine plants. In ‘The vegetation of ultramafic (serpentine) soils’. (Eds J ProctorJ, A Baker, R Reeves) pp. 253–277. (Intercept Ltd: Andover, UK)

Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil 249, 57–65.
Tropical hyperaccumulators of metals and their potential for phytoextraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVyrs78%3D&md5=cbf55f1a172b76578365bfbf08e8c8b4CAS |

Reeves RD, Baker AJM, Borhidi A, Berazain R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Annals of Botany 83, 29–38.
Nickel hyperaccumulation in the serpentine flora of Cuba.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1ajsL4%3D&md5=7c7da72eed7b839cc8f91f3b3e6c182bCAS |

Rune O (1953) ‘Plant life on serpentines and related rocks in the north of Sweden.’ (Acta Phytogeographica Suecica: Uppsala, Sweden)

Schat H, Vooijs R, Kuiper E (1996) Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50, 1888–1895.
Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjs1antA%3D%3D&md5=6aa0c425f35ff739f6c9a46f509604f9CAS |

Sillanpää M, Jansson H (1992) ‘Status of cadmium, lead, cobalt and selenium in soils and plants of thirty countries (no. 65).’ (FAO: Rome)

Stanisavljević N, Savić J, Jovanović Ž, Miljuš-Djukić J, Radović S, Vinterhalter D, Vinterhalter B (2012) Antioxidative-related enzyme activity in Alyssum markgrafii shoot cultures as affected by nickel level. Acta Physiologiae Plantarum 34, 1997–2006.
Antioxidative-related enzyme activity in Alyssum markgrafii shoot cultures as affected by nickel level.Crossref | GoogleScholarGoogle Scholar |

StatSoft (1996) ‘Statistica (data analysis software system), Version 5.1.’ (StatSoft Inc.: Tulsa, OK)

Stevanović V, Tan K, Iatrou G (2003) Distribution of the endemic Balkan flora on serpentine I. Obligate serpentine endemics. Plant Systematics and Evolution 242, 149–170.
Distribution of the endemic Balkan flora on serpentine I. Obligate serpentine endemics.Crossref | GoogleScholarGoogle Scholar |

Tomović GM, Mihailović NL, Tumi AF, Gajić BA, Mišljenović TD, Niketić MS (2013) Trace metals in soils and several Brassicaceae plant species from serpentine sites of Serbia. Archives of Environmental Protection 39, 29–49.
Trace metals in soils and several Brassicaceae plant species from serpentine sites of Serbia.Crossref | GoogleScholarGoogle Scholar |

Tumi AF, Mihailović N, Gajić BA, Niketić M, Tomović G (2012) Comparative study of hyperaccumulation of nickel by Alyssum murale s.l. populations from the ultramafics of Serbia. Polish Journal of Environmental Studies 21, 1855–1866.

van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil 362, 319–334.
Hyperaccumulators of metal and metalloid trace elements: facts and fiction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2ks7bF&md5=33d4f38e8e5f9e438e75aa7e65cf4680CAS |

van Reeuwijk LP (2002) ‘Procedures for soil analysis.’ 6th edn. Technical paper 9. (International Soil Reference and Information Centre: Wageningen, The Netherlands) Available at http://www.isric.org/Isric/Webdocs/Docs/ISRIC_TechPap09_2002.pdf [Verified 25 February 2015]

Westerberg A, Saura A (1992) Serpentine and the population structure of Silene dioica (L.) Clairv. (Caryophyllaceae) In ‘Proceedings of the first international conference on serpentine ecology’. (Eds AJM Baker, J Proctor, RD Reeves) pp. 461–467. (Intercept Ltd.: Andover, UK)

Zayed A, Lytle CM, Qian JH, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206, 293–299.
Chromium accumulation, translocation and chemical speciation in vegetable crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlKhs78%3D&md5=b041fb59fb96dc2d54ec4f26622ff7b4CAS |

Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany 53, 535–543.
Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVegtL8%3D&md5=7d26c0125b9a9297e720b7262882050eCAS | 11847252PubMed |