Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Interaction of nickel and manganese in uptake, translocation and accumulation by the nickel-hyperaccumulator plant, Alyssum bracteatum (Brassicaceae)

S. Majid Ghaderian A C , Rasoul Ghasemi B and Faeze Hajihashemi A
+ Author Affiliations
- Author Affiliations

A Department of Biology, University of Isfahan, Isfahan 81746-73441, Iran.

B Department of Biology, Faculty of Science, Payame Noor University, Tehran 19395-4697, Iran.

C Corresponding author. Email: ghaderian@sci.ui.ac.ir

Australian Journal of Botany 63(2) 47-55 https://doi.org/10.1071/BT14210
Submitted: 26 August 2014  Accepted: 13 January 2015   Published: 14 April 2015

Abstract

Serpentine soils are often characterised by high concentrations of heavy metals, high plant diversity and endemism, and, in some cases, the presence of plants that hyperaccumulate nickel (Ni). Nickel uptake by hyperaccumulator plants could potentially be affected by other heavy metals in serpentine soils, such as manganese (Mn), which competes for uptake at roots. The present study investigated interactions between Ni and Mn in metal uptake, translocation and storage in a serpentine-endemic Ni-hyperaccumulator plant, Alyssum bracteatum (Brassicaceae), native to western Iran. The results based on a factorial treatment of seedlings using Ni and Mn and elemental analyses showed that whole shoot and root Ni concentrations were inversely correlated with Mn in the growing medium. Likewise, whole shoot and root Mn concentrations were inversely correlated with Ni in the medium, suggesting competition between Ni and Mn for uptake at roots. No evidence was found for competition between Ni and Mn for translocation between the roots and shoot.

Additional keywords: inhibitory effect, metal co-tolerance, metal rich soils, phytoremediation, serpentine, ultramafic.


References

Alves S, Trancoso MA, de Lurdes Simões Gonçalves M, Correia dos Santos MM (2011) A nickel availability study in serpentinised areas of Portugal. Geoderma 164, 155–163.
A nickel availability study in serpentinised areas of Portugal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1yhu7c%3D&md5=a0e3aa8c6dc0c12417e69d8b2f9b7396CAS |

Anacker BI, Whittall JB, Goldberg EE, Harrison SP (2010) Origins and consequences of serpentine endemism in the California flora. Evolution 65, 365–376.
Origins and consequences of serpentine endemism in the California flora.Crossref | GoogleScholarGoogle Scholar |

Baker AJM (1987) Metal tolerance. New Phytologist 106, 93–111.
Metal tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlCgurw%3D&md5=66df1e972a6e7fa59c7d0fae1a0da738CAS |

Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements, a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126.

Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating crops. Resources, Conservation and Recycling 11, 41–49.
The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating crops.Crossref | GoogleScholarGoogle Scholar |

Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. International Journal of Phytoremediation 17, 117–127.
Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvV2ltrY%3D&md5=c499c4b8185f53d4d75f485a3cdeb312CAS | 25237722PubMed |

Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA (2004a) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environmental Science & Technology 38, 5797–5802.
Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFShs7o%3D&md5=324c54f6d13984252dd69e4b646b3983CAS |

Broadhurst CL, Chaney RL, Angle JA, Erbe EF, Maugel TK (2004b) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant and Soil 265, 225–242.
Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns12rsw%3D%3D&md5=cbe72390d271d2c7f078a768a0236f6eCAS |

Broadhurst CL, Tappero RV, Maugel TK, Erbe EF, Sparks DL, Chaney RL (2009) Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant and Soil 314, 35–48.
Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum.Crossref | GoogleScholarGoogle Scholar |

Brooks RR (1998) ‘Plants that hyperaccumulate heavy metals.’ (CAB International: Wallingford, UK)

Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7, 49–57.
Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkt1KhsL8%3D&md5=0c18d4fa860a65a0ff100bc0e7f9c7cbCAS |

Brooks RR, Shaw S, Asensi Marfil A (1981) Some observations on the ecology, metal uptake and nickel tolerance of Alyssum serpyllifolium subspecies from the Iberian peninsula. Vegetatio 45, 183–188.
Some observations on the ecology, metal uptake and nickel tolerance of Alyssum serpyllifolium subspecies from the Iberian peninsula.Crossref | GoogleScholarGoogle Scholar |

Cailliatte R, Schikora A, Briat J-F, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter nramp1 is essential for Arabidopsis growth in low manganese conditions. The Plant Cell 22, 904–917.
High-affinity manganese uptake by the metal transporter nramp1 is essential for Arabidopsis growth in low manganese conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsF2ksb8%3D&md5=f45dda7831fa97d4584505fe04d8fd3dCAS | 20228245PubMed |

Cataldo DA, McFadden KM, Garland TR, Wildung RE (1988) Organic constituents and complexation of nickel (II), iron (III), cadmium (II) and plutonium (IV) in soybean xylem exudates. Plant Physiology 86, 734–739.
Organic constituents and complexation of nickel (II), iron (III), cadmium (II) and plutonium (IV) in soybean xylem exudates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitVWktLc%3D&md5=4db35d3064474e17e6e84d92489d36d0CAS | 16665978PubMed |

Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Donald LS (2007) Improved understanding of hyperaccumulation yields, commercial phytoextraction and phytomining technologies. Journal of Environmental Quality 36, 1429–1443.
Improved understanding of hyperaccumulation yields, commercial phytoextraction and phytomining technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2nsL%2FE&md5=6dd23f826db1e55bbee2e2b2306a93b6CAS | 17766822PubMed |

Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development. New Phytologist 175, 387–404.
Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFSqs7w%3D&md5=88a945fa27019b76a8f0d08243daf050CAS | 17635215PubMed |

Deng T-H-B, Cloquet C, Tang Y-T, Sterckeman T, Echevarria G, Estrade N, Morel JL, Qiu R-L (2014) Nickel and zinc isotope fractionation in hyperaccumulating and non-accumulating plants. Environmental Science & Technology 48, 11926–11933.
Nickel and zinc isotope fractionation in hyperaccumulating and non-accumulating plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFert7nM&md5=addcca9498b4e8b0e930529e8d4a4c1bCAS |

Dickinson NM, Baker AJM, Doronila A, Laidlaw S, Reeves RD (2009) Phytoremediation of ninorganics: realism and synergies. International Journal of Phytoremediation 11, 97–114.
Phytoremediation of ninorganics: realism and synergies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKrt7bO&md5=24f44372fb7fb8011a326605e5f20afaCAS |

Eitinger T, Suhr J, Moore L, Smith JAC (2005) Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 18, 399–405.
Secondary transporters for nickel and cobalt ions: theme and variations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFOktrk%3D&md5=b2fc3694d68e3bfd24f644e5c1696d53CAS | 16158232PubMed |

Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annual Review of Plant Physiology and Plant Molecular Biology 49, 669–696.
Molecular biology of cation transport in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvVSgs7k%3D&md5=39f2dd2d85ac7848c2935880db6ab044CAS | 15012250PubMed |

Gabbrielli R, Pandolfini T (1984) Effect of Mg2+ and Ca2+ on the response to nickel toxicity in a serpentine endemic and nickel-accumulating species. Physiologia Plantarum 62, 540–544.
Effect of Mg2+ and Ca2+ on the response to nickel toxicity in a serpentine endemic and nickel-accumulating species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXntlOhtQ%3D%3D&md5=d7da758eb46fa3f58758c01526fe7d4bCAS |

Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat J-F, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. The Plant Journal 49, 1–15.
TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVyrtw%3D%3D&md5=714700298179cf3398393024938e7369CAS | 17144893PubMed |

Ghaderian SM, Mohtadi A, Rahiminejad MR, Baker AJM (2007) Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environmental Pollution 145, 293–298.
Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWhsr3M&md5=dc2641578d4fd0741c19c861c37825d4CAS | 16781032PubMed |

Ghasemi R, Ghaderian SM (2009) Responses of two populations of an Iranian nickel-hyperaccumulating serpentine plant, Alyssum inflatum Nyar., to substrate Ca/Mg quotient and nickel. Environmental and Experimental Botany 67, 260–268.
Responses of two populations of an Iranian nickel-hyperaccumulating serpentine plant, Alyssum inflatum Nyar., to substrate Ca/Mg quotient and nickel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2qs7jM&md5=83866dafb6e62a4131fc1d9b8ddae0f6CAS |

Ghasemi R, Ghaderian SM, Krämer U (2009a) Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyperaccumulator plant Alyssum inflatum. New Phytologist 184, 566–580.
Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyperaccumulator plant Alyssum inflatum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOgs7jN&md5=e435886cc684c36a062ea35a005a7d20CAS | 19691676PubMed |

Ghasemi R, Ghaderian SM, Krämer U (2009b) Accumulation of nickel in trichomes of a nickel hyperaccumulator plant, Alyssum inflatum. Northeastern Naturalist 16, 81–92.
Accumulation of nickel in trichomes of a nickel hyperaccumulator plant, Alyssum inflatum.Crossref | GoogleScholarGoogle Scholar |

Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453, 391–395.
Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvV2qtLw%3D&md5=52e574ce1256b94129700db5af04ac80CAS | 18425111PubMed |

Hell R, Mendel R-R (2010) ‘Cell biology of metals and nutrients: plant cell monographs. Vol. 17.’ (Springer: Heidelberg, Germany)

Inamdar JA, Rao NV (1983) Light and scanning electron microscopic studies on trichomes of some Brassicaceae. Feddes Repertorium 94, 183–190.

Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. The Plant Cell 17, 2089–2106.
Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt1yjtb8%3D&md5=66f4d3b2625e9de661de10a7b44637dbCAS | 15923352PubMed |

Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiology 131, 716–724.
The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlyjs7k%3D&md5=a38fca2226270891cde5230d9b3d9aefCAS | 12586895PubMed |

Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. The Plant Journal 39, 237–251.
The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFGrt7s%3D&md5=17e45bafde4ba7f5a488404d42beeb43CAS | 15225288PubMed |

Krämer U (2010) Metal hyperaccumulation in plants. Annual Review of Plant Biology 61, 517–534.
Metal hyperaccumulation in plants.Crossref | GoogleScholarGoogle Scholar | 20192749PubMed |

Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379, 635–638.
Free histidine as a metal chelator in plants that accumulate nickel.Crossref | GoogleScholarGoogle Scholar |

Krämer U, Talke I, Hanikenne M (2007) Transition metal transport. FEBS Letters 581, 2263–2272.
Transition metal transport.Crossref | GoogleScholarGoogle Scholar | 17462635PubMed |

Küpper H, Lombi E, Zhao F-J, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. Journal of Experimental Botany 52, 2291–2300.
Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense.Crossref | GoogleScholarGoogle Scholar | 11709579PubMed |

Li Y-M, Chaney R, Brewer E, Rosenberg R, Angle JS, Baker AJM, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant and Soil 249, 107–115.
Development of a technology for commercial phytoextraction of nickel: economic and technical considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVyrs74%3D&md5=0708e75b82b0162996210868f5a224c2CAS |

Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim S-A, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology 126, 1646–1667.
Phylogenetic relationships within cation transporter families of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 11500563PubMed |

Massoura ST, Echevarria G, Becquer T, Ghanbaja J, Leclerc-Cessac E, Morel JL (2006) Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 136, 28–37.
Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlahtbjI&md5=ebaf59a3dfecdc157a9bfcceb09c057cCAS |

Montargès-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL (2008) Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry 69, 1695–1709.
Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study.Crossref | GoogleScholarGoogle Scholar | 18371995PubMed |

Oran S (1996) Trichomes of the genus Alyssum L. (Cruciferae) in Jordan. Webbia 50, 237–245.
Trichomes of the genus Alyssum L. (Cruciferae) in Jordan.Crossref | GoogleScholarGoogle Scholar |

Proctor J (1999) Toxins, nutrient shortages and droughts: the serpentine challenge. Trends in Ecology & Evolution 14, 334–335.
Toxins, nutrient shortages and droughts: the serpentine challenge.Crossref | GoogleScholarGoogle Scholar |

Psaras GK, Constantinidis TH, Cotsopoulos B, Maneta Y (2000) Relative abundance of nickel in the leaf epidermis of eight hyperaccumulators: evidence that the metal is excluded from both guard cells and trichomes. Annals of Botany 86, 73–78.
Relative abundance of nickel in the leaf epidermis of eight hyperaccumulators: evidence that the metal is excluded from both guard cells and trichomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlSnt7c%3D&md5=482d3ec52654ad3ab3e67ac1df1bb8c2CAS |

Redjala T, Sterckeman T, Skiker S, Echevarria G (2010) Contribution of apoplast and symplast to short term nickel uptake by maize and Leptoplax emarginata roots. Environmental and Experimental Botany 68, 99–106.
Contribution of apoplast and symplast to short term nickel uptake by maize and Leptoplax emarginata roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wit77L&md5=6dd04388faf5890c7ab1a1747f2d4cb8CAS |

Reeves RD, Adigüzel N (2004) Rare plants and nickel accumulators from Turkish serpentine soils, with special reference to Centaurea species. Turkish Journal of Biology 28, 147–153.

Reeves RD, Adigüzel N (2008) The nickel hyperaccumulating plants of the serpentines of Turkey and adjacent areas: a review with new data. Turkish Journal of Biology 32, 143–153.

Richau KH, Kozhevnikova AD, Seregin IV, Voojis R, Koevoets PLM, Smith JAC, Ivanov VB, Schat H (2009) Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytologist 183, 106–116.
Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFCku7k%3D&md5=0800fd5f573bab581e59af2f4f63ea0cCAS | 19368671PubMed |

Schwitzguébel JP, van der Lelie D, Baker AJM, Glass DJ, Vangronsveld J (2002) Phytoremediation: European and American trends. Journal of Soils and Sediments 2, 91–99.
Phytoremediation: European and American trends.Crossref | GoogleScholarGoogle Scholar |

Smart KE, Kilburn MR, Salter CJ, Smith JAC, Grovenor CRM (2007) Nano SIMS and EPMA analysis of nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. International Journal of Mass Spectrometry 260, 107–114.
Nano SIMS and EPMA analysis of nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFSjtQ%3D%3D&md5=7ca680991bb8e87ab1de1fc58146920aCAS |

Tappero R, Peltier E, Grafe M, Heidel K, Ginder-Vogel M (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytologist 175, 641–654.
Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKgsL3O&md5=8bea2bf94a2c4b2725b991b4f1a677b7CAS | 17688581PubMed |

van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil 362, 319–334.
Hyperaccumulators of metal and metalloid trace elements: facts and fiction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2ks7bF&md5=bee356700f51fe2ae7218429ac2a5674CAS |

Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181, 759–776.
Molecular mechanisms of metal hyperaccumulation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFGitb8%3D&md5=72439677a31d576eeaec3e0a308c3985CAS | 19192189PubMed |

White PJ (2001) The pathways of calcium movement to the xylem. Journal of Experimental Botany 358, 892–899.

White PJ, Whiting SN, Baker AJM, Broadley MR (2002) Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytologist 153, 201–207.
Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVSnt7s%3D&md5=a40fd112eed1de057552e26df2159310CAS |

Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffré T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restoration Ecology 12, 106–116.
Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation.Crossref | GoogleScholarGoogle Scholar |