Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Functional groups in Lychnophorinae (Asteraceae: Vernonieae) based on morphological and anatomical traits

Makeli Garibotti Lusa A B , Beatriz Appezzato-da-Glória A , Benoît Loeuille C , Giacomo Bartoli D and Daniela Ciccarelli D E
+ Author Affiliations
- Author Affiliations

A Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘Luiz de Queiroz’, Avenida Pádua Dias 11, Universidade de São Paulo, 13418-900, Piracicaba, SP, Brasil.

B Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, UNICAMP, C.P. 6109, 13083-970, Campinas, SP, Brasil.

C Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, SP, Brasil.

D Dipartimento di Biologia, Università di Pisa, Via Luca Ghini 13, 56126 Pisa, Italia.

E Corresponding author. Email: dciccarelli@biologia.unipi.it

Australian Journal of Botany 62(2) 150-163 https://doi.org/10.1071/BT13301
Submitted: 18 December 2013  Accepted: 10 April 2014   Published: 16 May 2014

Abstract

The Lychnophorinae subtribe (Asteraceae: Vernonieae) occurs mainly on the Central Brazilian Plateau, especially in areas characterised by intense solar radiation, large daily temperature fluctuations, water scarcity during autumn and winter, and frequent fire. However, a few species of Lychnophorinae, such as Blanchetia heterotricha DC., are not restricted to the Cerrado Domain, but can live in open and humid areas of borders of the Atlantic Forest. To understand the mechanisms of Lychnophorinae adaptation to these environmental conditions, habit, leaf and stem functional traits from 12 species were analysed. Leaf and stem samples were processed and stained using standard plant-anatomy methodology. A comparative analysis of functional groups was performed by principal coordinates analysis, which was applied to two matrices of 30 qualitative and five quantitative traits. The multivariate analysis based on qualitative traits highlighted the following four functional types that might be linked to ecological conditions: Group I adapted at open and humid areas of borders of the Atlantic Forest; Group II, with features mostly related to foggy habitats; Group III, exhibiting traits quite adapted to the seasonally dry and variable conditions of the campos rupestres; and Group IV, showing the most specialised morphological and anatomical traits, which might be related to the extreme conditions of the campos rupestres.

Additional keywords: Cerrado Domain, Compositae, plant adaptation, plant anatomy, plant functional types.


References

Appezzato-da-Glória B, Cury G (2011) Morpho-anatomical features of underground systems in six Asteraceae species from the Brazilian Cerrado. Anais da Academia Brasileira de Ciencias 83, 981–991.
Morpho-anatomical features of underground systems in six Asteraceae species from the Brazilian Cerrado.Crossref | GoogleScholarGoogle Scholar | 21779656PubMed |

Bartoli G, Bottega S, Forino LMC, Ruffini Castiglione M, Tagliasacchi AM, Grilli I, Spanò C (2013) Morpho-physiological plasticity contributes to tolerance of Calluna vulgaris in an active geothermal field. Australian Journal of Botany 61, 107–118.
Morpho-physiological plasticity contributes to tolerance of Calluna vulgaris in an active geothermal field.Crossref | GoogleScholarGoogle Scholar |

Bartoli G, Bottega S, Forino LMC, Ciccarelli D, Spanò C (2014) Plant adaptation to extreme environments: the example of Cistus salviifolius of an active geothermal alteration field. Comptes Rendus Biologies 337, 101–110.
Plant adaptation to extreme environments: the example of Cistus salviifolius of an active geothermal alteration field.Crossref | GoogleScholarGoogle Scholar | 24581804PubMed |

Baruch Z (1979) Elevational differentiation in Espeletia schultzii (Compositae), a giant rosette plant of the Venezuelan Paramos. Ecology 60, 85–98.
Elevational differentiation in Espeletia schultzii (Compositae), a giant rosette plant of the Venezuelan Paramos.Crossref | GoogleScholarGoogle Scholar |

Baruch Z, Smith AP (1979) Morphological and physiological correlates of niche breadth in two species of Espeletia (Compositae) in the Venezuelan Andes. Oecologia 38, 71–82.
Morphological and physiological correlates of niche breadth in two species of Espeletia (Compositae) in the Venezuelan Andes.Crossref | GoogleScholarGoogle Scholar |

Batalha MA (2011) O cerrado não é um bioma. Biota Neotropica 11, 21–24.
O cerrado não é um bioma.Crossref | GoogleScholarGoogle Scholar |

Bieras AC, Sajo MG (2009) Leaf structure of the cerrado (Brazilian savanna) woody plants. Trees 23, 451–471.
Leaf structure of the cerrado (Brazilian savanna) woody plants.Crossref | GoogleScholarGoogle Scholar |

Bosabalidis A, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science 163, 375–379.
Comparative effects of drought stress on leaf anatomy of two olive cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVWnurg%3D&md5=c525d4bf5ea655382365d631bf2c7f16CAS |

Chamberlain CJ (1932) ‘Methods in plant histology.’ (University of Chicago Press: Chicago, IL)

Charrière-Ladreix Y (1976) Repartition intracellulaire du sécrétat flavonique de Populus nigra L. Planta 129, 167–174.
Repartition intracellulaire du sécrétat flavonique de Populus nigra L.Crossref | GoogleScholarGoogle Scholar | 24430909PubMed |

Chueiri-Chiaretto IA (1984) Estudos morfo-anatômicos da folha de espécies de Trimesia (Iridaceae). Hoehnea 11, 47–58.

Clarke P, Lawes M, Midgley J, Lamont B, Ojeda F, Burrows G, Enright N, Knox K (2013) Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytologist 197, 19–35.
Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s%2FptlGmsw%3D%3D&md5=5c249d4708a0c86893ba249f399e65d2CAS | 23110592PubMed |

Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51, 335–380.
A handbook of protocols for standardized and easy measurement of plant functional traits worldwide.Crossref | GoogleScholarGoogle Scholar |

Cox G, Hawes CR, Van der Lubbe L, Juniper BE (1987) High-voltage electron microscopy of whole, critical-point dried plant cells. 2. Cytoskeletal structures and plastid motility in Selaginella. Protoplasma 140, 173–186.
High-voltage electron microscopy of whole, critical-point dried plant cells. 2. Cytoskeletal structures and plastid motility in Selaginella.Crossref | GoogleScholarGoogle Scholar |

Dantas VL, Batalha MA (2011) Vegetation structure: fine scale relationships with soil in a cerrado site. Flora 206, 341–346.
Vegetation structure: fine scale relationships with soil in a cerrado site.Crossref | GoogleScholarGoogle Scholar |

David R, Carde JP (1964) Coloration différentielle des inclusions lipidiques et terpéniques des pseudophylles du Pin maritime au moyen du réactif Nadi. Comptes Rendus de l’Academie des Sciences de Paris Série D 258, 1338–1340.

De Cáceres M, Font X, García R, Oliva F (2003) ‘VEGANA, un paquete de programas para la gestión y análisis de datos ecológicos.’ (VII Congreso Nacional de la Associación Española de Ecología Terrestre: Bellaterra, España) Available at http://biodiver.bio.ub.es/vegana/papers/AEET2003def.pdf. [Verified 2 May 2013]

Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science 8, 463–474.
Plant functional types and ecosystem function in relation to global change.Crossref | GoogleScholarGoogle Scholar |

Díaz S, Hodgson J, Thompson K, Cabido M, Cornelissen J, Jalili A, Montserrat-Marti G, Grime J, Zarrinkamar F, Asri Y, Band S, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontome M, Shirvany F, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-Diez A, Shaw S, Siavash B, Villar-Salvador P, Za M (2004) The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science 15, 295–304.
The plant traits that drive ecosystems: evidence from three continents.Crossref | GoogleScholarGoogle Scholar |

Echternacht L, Trovó M, Oliveira CT, Pirani JR (2011) Areas of endemism in the Espinhaço Range in Minas Gerais, Brazil. Flora 206, 782–791.
Areas of endemism in the Espinhaço Range in Minas Gerais, Brazil.Crossref | GoogleScholarGoogle Scholar |

Fahn A, Cutler DF (1992) ‘Xerophytes. Encyclopedia of plant anatomy.’ (Borntraeger: Berlin)

Falster DS, Westoby M (2003) Leaf size and angle vary widely across species: what consequences for light interception? New Phytologist 158, 509–525.
Leaf size and angle vary widely across species: what consequences for light interception?Crossref | GoogleScholarGoogle Scholar |

Fiaschi P, Pirani JR (2009) Review of plant biogeographic studies in Brazil. Journal of Systematics and Evolution 47, 477–496.
Review of plant biogeographic studies in Brazil.Crossref | GoogleScholarGoogle Scholar |

Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annual Review of Plant Biology 56, 41–71.
Calcium oxalate in plants: formation and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVaru74%3D&md5=2ba44f8ad5d99f92cbc13f304bbeec6eCAS | 15862089PubMed |

Fujinami R, Yoshihama I, Imaichi R (2011) Dimorphic chloroplasts in the epidermis of Podostemoideae, a subfamily of the unique aquatic angiosperm family Podostemaceae. Journal of Plant Research 124, 601–605.
Dimorphic chloroplasts in the epidermis of Podostemoideae, a subfamily of the unique aquatic angiosperm family Podostemaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKltbjI&md5=309b0d24d222c94f71da7752203b44dcCAS | 21120679PubMed |

Fundação Biodiversitas (2005) ‘Lista da flora brasileira ameaçada de extinção.’ (Workshop revisão da lista da flora brasileira ameaçada de extinção). Available at http://www.biodiversitas.org.br/cepf/edital/flora_brasil.pdf. [Verified 1 September 2013]

Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region. In ‘Centres of plant diversity: a guide and strategy for their conservation. Vol. 3: the Americas’. (Eds SD Davis, VH Heywood, O Herrera-MacBride, J Villa-Lobos, AC Hamilton) pp. 397–404. (WWF–IUCN: Cambridge, UK)

Givnish TJ, McDiarmid RW, Buck WR (1986) Fire adaptation in Neblinaria celiae (Theaceae), a high-elevation rosette shrub endemic to a wet equatorial tepui. Oecologia 70, 481–485.
Fire adaptation in Neblinaria celiae (Theaceae), a high-elevation rosette shrub endemic to a wet equatorial tepui.Crossref | GoogleScholarGoogle Scholar |

Gontijo BM (2008) Uma geografia para a Cadeia do Espinhaço. A flora dos campos rupestres da Cadeia do Espinhaço. Megadiversidade 4, 7–14.

Goodland R, Ferri MG (1979) ‘Ecologia do Cerrado.’ (Universidade de São Paulo: São Paulo, Brazil)

Hassiotou F, Ludwig M, Renton M, Veneklaas E, Evans J (2009) Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. Journal of Experimental Botany 60, 2303–2314.
Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlyiurs%3D&md5=2651b1aa28b8a5af5aeb75e0dbc7292bCAS | 19286919PubMed |

Hough RA, Wetzel RG (1977) Photosynthetic pathways of some aquatic plants. Aquatic Botany 3, 297–313.
Photosynthetic pathways of some aquatic plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXjsVKqsg%3D%3D&md5=0e4e8e111383d168645b265b984aec29CAS |

INMET (2013) ‘Dados meteorológicos.’ (Instituto Nacional de Meteorologia). Available at http://www.inmet.gov.br/portal/. [Verified 01 April 2013]

James SA, Bell DT (2000) Leaf orientation, light interception and stomatal conductance of Eucalyptus globulus ssp. globulus leaves. Tree Physiology 20, 815–823.
Leaf orientation, light interception and stomatal conductance of Eucalyptus globulus ssp. globulus leaves.Crossref | GoogleScholarGoogle Scholar | 12651502PubMed |

Johansen DA (1940) ‘Plant microtechnique.’ (McGraw-Hill: New York)

Jordan GJ, Dillon RA, Weston PH (2005) Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae. American Journal of Botany 92, 789–796.
Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae.Crossref | GoogleScholarGoogle Scholar | 21652458PubMed |

Jordan G, Weston P, Carpenter R, Dillon R, Brodribb T (2008) The evolutionary relations of sunken covered, and encrypted stomata to dry habitats in Proteaceae. American Journal of Botany 95, 521–530.
The evolutionary relations of sunken covered, and encrypted stomata to dry habitats in Proteaceae.Crossref | GoogleScholarGoogle Scholar | 21632378PubMed |

Jordan GJ, Carpenter RJ, Brodribb TJ (2014) Using fossil leaves as evidence for open vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology 395, 168–175.
Using fossil leaves as evidence for open vegetation.Crossref | GoogleScholarGoogle Scholar |

Karabourniotis G (1998) Light-guiding function of foliar sclereids in the evergreen sclerophyll Phillyrea latifolia: a quantitative approach. Journal of Experimental Botany 49, 739–746.
Light-guiding function of foliar sclereids in the evergreen sclerophyll Phillyrea latifolia: a quantitative approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivV2ntbw%3D&md5=dc19ff1088af152edd5848ecc3203027CAS |

Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolality for use in electron microscopy. The Journal of Cell Biology 27, 137A–138A.

Kofidis G, Bosabalidis A, Moustakas M (2003) Contemporary seasonal and altitudinal variations of leaf structural features in oregano (Origanum vulgare L.). Annals of Botany 92, 635–645.
Contemporary seasonal and altitudinal variations of leaf structural features in oregano (Origanum vulgare L.).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svpsFKjsQ%3D%3D&md5=715309b3168e199f780845be80faaeafCAS | 12967906PubMed |

Loeuille B (2011) Towards a phylogenetic classification of Lychnophorinae (Asteraceae: Vernonieae). Thesis, University of São Paulo, São Paulo, Brazil.

Lusa MG, Boeger MR, Moço MCC, Bona C (2011) Morpho-anatomical adaptations of Potamogeton polygonus (Potamogetonaceae) to lotic and lentic environments. Rodriguésia 62, 927–936.

Mansanares ME, Forni-Martins ER, Semir J (2002) Chromosome numbers in the genus Lychnophora Mart. (Lychnophorinae, Vernonieae, Asteraceae). Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics 55, 367–374.
Chromosome numbers in the genus Lychnophora Mart. (Lychnophorinae, Vernonieae, Asteraceae).Crossref | GoogleScholarGoogle Scholar |

Mansanares ME, Forni Martins ER, Semir J (2007) Cytotaxonomy of Lychnophora Mart. (Asteraceae: Vernonieae: Lychnophorinae) species. Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics 60, 21–28.
Cytotaxonomy of Lychnophora Mart. (Asteraceae: Vernonieae: Lychnophorinae) species.Crossref | GoogleScholarGoogle Scholar |

Marques AR, Garcia QS, Rezende JLP, Fernandes GW (2000) Variations in leaf characteristics of two species of Miconia in the Brazilian cerrado under different light intensities. Tropical Ecology 41, 47–60.

Mello-Silva R (1990) Morphological and anatomical differentiation of Vellozia hirsuta populations (Velloziaceae). Plant Systematics and Evolution 173, 197–208.
Morphological and anatomical differentiation of Vellozia hirsuta populations (Velloziaceae).Crossref | GoogleScholarGoogle Scholar |

Nakajima JN, Teles AM, Ritter M, Mondin CA, Dematteis M, Heiden G, Borges XB, Rivera VL, Bringer Jr JBA, Saavedra M, de Cássia Araújo Pereira R, Sales-de-Melo MRC (2009) Asteraceae. In ‘Plantas raras do Brasil: Conservação Internacional’. (Ed. AM Giulietti) pp. 76–89. (Universidade Estadual de Feira de Santana: Belo Horizonte, Brazil)

Navarro T, Alados CL, Cabezudo B (2006) Changes in plant functional types in response to goat and sheep grazing in two semi-arid shrublands of SE Spain. Journal of Arid Environments 64, 298–322.
Changes in plant functional types in response to goat and sheep grazing in two semi-arid shrublands of SE Spain.Crossref | GoogleScholarGoogle Scholar |

Noble I, Gitay H (1996) A functional classification for predicting the dynamics of landscapes. Journal of Vegetation Science 7, 329–336.
A functional classification for predicting the dynamics of landscapes.Crossref | GoogleScholarGoogle Scholar |

Oliveira V, Sajo M (1999) Root anatomy of nine Orchidaceae species. Brazilian Archives of Biology and Technology 42, 405–413.
Root anatomy of nine Orchidaceae species.Crossref | GoogleScholarGoogle Scholar |

Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences 11, 1633–1644.
Updated world map of the Köppen–Geiger climate classification.Crossref | GoogleScholarGoogle Scholar |

Pérez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte M, Cornwell W, Craine J, Gurvich D, Urcelay C, Veneklaas E, Reich P, Poorter L, Wright I, Ray P, Enrico L, Pausas J, de Vos A, Buchmann N, Funes G, Quetier F, Hodgson J, Thompson K, Morgan H, ter Steege H, van der Heijden M, Sack L, Blonder B, Poschlod P, Vaieretti M, Conti G, Staver A, Aquino S, Cornelissen J (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61, 167–234.
New handbook for standardised measurement of plant functional traits worldwide.Crossref | GoogleScholarGoogle Scholar |

Podani J (2007) ‘Analisi ed esplorazione multivariata dei dati in ecologia e biologia.’ (Liguori Editore: Napoli, Italy)

Rapini A, Ribeiro PL, Lambert S, Pirani JR (2008) A flora dos campos rupestres da Cadeia do Espinhaço. Megadiversidade 4, 15–23.

Ribeiro JF, Walter BM (2008) As principais fitofisionomias do bioma Cerrado. In ‘Cerrado. Vol. 1: ecologia e flora’. (Eds SM Sano, SP Almeida, JF Ribeiro) pp. 151–212. (Embrapa Cerrados: Brasília, Brazil)

Rizzini CT (1997) ‘Tratado de fitogeografia do Brasil: aspectos ecológicos, sociológicos e florísticos.’ (Âmbito Cultural Edições: Rio de Janeiro)

Rotondi A, Rossi F, Asunis C, Cesaraccio C (2003) Leaf xeromorphic adaptations of some plants of coastal Mediterranean macchia ecosystem. Journal of Mediterranean Ecology 4, 25–35.

Sajo MG, Wanderley MGL, Carvalho LM (1995) Caracterização anatômica foliar para 14 espécies de Xyris L. (Xyridaceae) da Serra do Cipó, MG, Brasil. Acta Botanica Brasilica 9, 101–114.
Caracterização anatômica foliar para 14 espécies de Xyris L. (Xyridaceae) da Serra do Cipó, MG, Brasil.Crossref | GoogleScholarGoogle Scholar |

Sakai WS (1973) Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Stain Technology 48, 247–249.

Sakurai N, Domoto K, Takagi S (2005) Blue-light-induced reorganization of the actin cytoskeleton and the avoidance response of chloroplasts in epidermal cells of Vallisneria gigantea. Planta 221, 66–74.
Blue-light-induced reorganization of the actin cytoskeleton and the avoidance response of chloroplasts in epidermal cells of Vallisneria gigantea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtl2lurY%3D&md5=35c6cf21ac60ece1c082253b9c0064dcCAS | 15843965PubMed |

Scatena V, Giulietti A, Borba E, van den Berg C (2005) Anatomy of Brazilian Eriocaulaceae: correlation with taxonomy and habitat using multivariate analyses. Plant Systematics and Evolution 253, 1–22.
Anatomy of Brazilian Eriocaulaceae: correlation with taxonomy and habitat using multivariate analyses.Crossref | GoogleScholarGoogle Scholar |

Semir J, Rezende AR, Monge M, Lopes NP (2011) ‘As arnicas endêmicas das serras do Brasil: uma visão sobre a biologia e a química das espécies de Lychnophora (Asteraceae).’ (Editora UFOP: Ouro Preto, MG, Brazil)

Sharkey TD, Chen X, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiology 125, 2001–2006.
Isoprene increases thermotolerance of fosmidomycin-fed leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFKqurs%3D&md5=7bdcd65ab689708ce7f51c234774f9d3CAS | 11299379PubMed |

Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiology 115, 1413–1420.

Smith A, Young T (1987) Tropical alpine plant ecology. Annual Review of Ecology and Systematics 18, 137–158.
Tropical alpine plant ecology.Crossref | GoogleScholarGoogle Scholar |

Stern W, Judd W, Carlsward B (2004) Systematic and comparative anatomy of Maxillarieae (Orchidaceae), sans Onciciinae. Botanical Journal of the Linnean Society 144, 251–274.
Systematic and comparative anatomy of Maxillarieae (Orchidaceae), sans Onciciinae.Crossref | GoogleScholarGoogle Scholar |

Takagi S (2003) Actin-based photo-orientation movement of chloroplasts in plant cells. The Journal of Experimental Biology 206, 1963–1969.
Actin-based photo-orientation movement of chloroplasts in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslaltL0%3D&md5=e237080048f8ebf425ffff87c0382013CAS | 12756277PubMed |

Turner IM (1994) Sclerophylly – primarily protective? Functional Ecology 8, 669–675.
Sclerophylly – primarily protective?Crossref | GoogleScholarGoogle Scholar |

Versieux L, Elbl P, Wanderley M, Menezes N (2010) Alcantarea (Bromeliaceae) leaf anatomical characterization and its systematic implications. Nordic Journal of Botany 28, 385–397.
Alcantarea (Bromeliaceae) leaf anatomical characterization and its systematic implications.Crossref | GoogleScholarGoogle Scholar |

Vogelmann TC, Martin G (1993) The function significance of palisade tissue: penetration of directional versus diffuse light. Plant, Cell & Environment 16, 65–72.
The function significance of palisade tissue: penetration of directional versus diffuse light.Crossref | GoogleScholarGoogle Scholar |

Walker BH (1992) Biodiversity and ecological redundancy. Conservation Biology 6, 18–23.
Biodiversity and ecological redundancy.Crossref | GoogleScholarGoogle Scholar |