Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Evaluation of different methods for assessing the reproductive mode of weeping lovegrass plants, Eragrostis curvula (Schrad.) Nees

Mauro Meier A , Diego Zappacosta A , Juan Pablo Selva A , Silvina Pessino B and Viviana Echenique A C
+ Author Affiliations
- Author Affiliations

A Laboratorio de Biotecnología Vegetal, CERZOS-CONICET, CCT Bahía Blanca, Camino La Carrindanga km 7 and Departamento de Agronomía, Universidad Nacional del Sur, San Andrés 800, 8000 Bahía Blanca, Argentina.

B Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, S2125ZAA Zavalla, Provincia de Santa Fe, Argentina.

C Corresponding author. Email: echeniq@criba.edu.ar

Australian Journal of Botany 59(3) 253-261 https://doi.org/10.1071/BT10267
Submitted: 8 October 2010  Accepted: 16 March 2011   Published: 9 May 2011

Abstract

Weeping lovegrass is a forage grass cultivated in semiarid regions of the world that reproduces mainly by apomixis (diplospory), a process that involves the formation of asexual seeds and bypasses the processes of meiosis and fertilisation. The aim of this work was to evaluate and compare different techniques (cytoembryology, callose deposition, flow cytometry and progeny tests) to determine the reproductive mode of weeping lovegrass. Typical sexual and apomictic processes were clearly differentiated using cytoembryology, and different callose deposition patterns were observed in sexual and apomictic genotypes. Previous studies indicated that presence of callose on the cell wall of the megaspore mother cell is associated only with sexual processes. Nevertheless, our results also found callose deposition in apomictic genotypes, although clearly different from the pattern found in sexual processes, allowing discrimination between sexual and apomictic plants. Flow cytometry seed screening using individual seeds did not differentiate between sexual and apomictic plants as the embryo : endosperm DNA content ratio was similar in sexual and apomictic plants. Progeny tests using molecular markers showed uniform patterns in offspring from apomictic plants and variable patterns among the progeny of sexual plants. The results obtained from cytological studies and progeny tests were similar, indicating that both methods provide useful tools for determination of reproductive mode. However, the callose test with aniline blue was faster and easier to use than other techniques.


References

Acuña CA, Blount AR, Quesenberry KH, Kenworthy KE, Hanna WW (2009) Bahiagrass tetraploid germplasm: reproductive and agronomic characterization of segregating progeny. Crop Science 49, 581–588.
Bahiagrass tetraploid germplasm: reproductive and agronomic characterization of segregating progeny.Crossref | GoogleScholarGoogle Scholar |

Alleman M, Doctor J (2000) Genomic imprinting in plants: observations and evolutionary implications. Plant Molecular Biology 43, 147–161.
Genomic imprinting in plants: observations and evolutionary implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFyqur4%3D&md5=43c505e61163fe57267b0e49522a5543CAS | 10999401PubMed |

Arnholdt-Schmitt B (2000) RAPD analysis: a method to investigate aspects of the reproductive biology of Hieracium perforatum. Theoretical and Applied Genetics 100, 906–911.
RAPD analysis: a method to investigate aspects of the reproductive biology of Hieracium perforatum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlags7s%3D&md5=f093f6d056e41c29dcd4c60b1cb218d6CAS |

Bhat V, Dwivedi KK, Khurana JP, Sopory SK (2005) Apomixis: an enigma with potential applications. Current Science 89, 1879–1893.

Bicknell R, Koltunow A (2004) Understanding apomixis: recent advances and remaining conundrums. The Plant Cell 16, S228–S245.
Understanding apomixis: recent advances and remaining conundrums.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFWltbg%3D&md5=8226becd50b579e86e5a9d68596450edCAS | 15131250PubMed |

Cáceres ME, Matzk F, Busti A, Pupilli F, Arcioni S (2001) Apomixis and sexuality in Paspalum simplex: characterization of the mode of reproduction in segregating progenies by different methods. Sexual Plant Reproduction 14, 201–206.

Cardone S, Polci P, Selva J, Mecchia M, Pessino S, Hermann P, Cambi V, Voigt P, Spangenberg G, Echenique V (2006) Novel genotypes of the subtropical grass Eragrostis curvula the study of apomixis. Euphytica 151, 263–272.
Novel genotypes of the subtropical grass Eragrostis curvula the study of apomixis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFChs7bO&md5=bdd95bcfa355217305154ad476614a6eCAS |

Carman J, Crane C, Riera-Lizarazu O (1991) Comparative histology of cell walls during meiotic and apomictic megasporogenesis into hexaploid australasian Elymus species. Crop Science 31, 1527–1532.
Comparative histology of cell walls during meiotic and apomictic megasporogenesis into hexaploid australasian Elymus species.Crossref | GoogleScholarGoogle Scholar |

Cervigni GDL, Paniego N, Díaz M, Selva JP, Zappacosta D, Zanazzi D, Landerreche I, Martelotto L, Felitti S, Pessino S, Spangenberg G, Echenique V (2008a) Expressed sequence tag analysis and development of gene associated markers in a near-isogenic plant system of Eragrostis curvula. Plant Molecular Biology 67, 1–10.
Expressed sequence tag analysis and development of gene associated markers in a near-isogenic plant system of Eragrostis curvula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1Krt7c%3D&md5=ef0b1311ffc1914e874b32358f174d7bCAS | 18196464PubMed |

Cervigni GDL, Selva JP, Mecchia M, Ochogavía A, Paniego N, Cardone S, Polci P, Felitti S, Martelotto L, Diaz M, Zappacosta D, Meier M, Voigt P, Spangenberg G, Pessino S, Echenique V (2008b) Genetic, epigenetic and transcriptional changes associated to ploidy and diplospory in Eragrostis curvula (Schrad.) Nees. In “Plant and animal genomes XVI conference”, San Diego, CA, USA, W16. Available at: http://www.intl-pag.org/16/abstracts/PAG16_W03_16.html

Crane C (2001) Classification of apomictic mechanisms. In “The flowering of apomixis: from mechanisms to genetic engineering”. (Eds Y Savidan, J Carman, T Dresselhaus) pp. 24–43. (CIMMYT, IRD, European Commission DG VI-FAIR: Mexico, DF)

Daurelio LD, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Systematics and Evolution 244, 189–199.
Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1CmtLs%3D&md5=5788b11fccd945096d626f9bfc8ed21cCAS |

Davies L, Cohen D (1992) Phenotypic variation in somaclones of Paspalum dilatatum and their seedling offspring. Canadian Journal of Plant Science 72, 773–784.

Durand J, Garnier L, Dajoz I, Mousset S, Veuille M (2000) Gene flow in a facultative apomictic Poacea, the savana grass Hyparrhenia diplandra. Genetics 156, 823–831.

Haluskova J, Cellarova E (1997) RFLP analysis of Hypericum perforatum somaclones and their progenies. Euphytica 95, 229–235.
RFLP analysis of Hypericum perforatum somaclones and their progenies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1Wltbs%3D&md5=c9fe1d3fed784b61e1ec4f1e2770e593CAS |

Johansen D (1940) ‘Plant microtechnique’. (McGraw-Hill Book Company Inc: New York)

Kaeppler SM, Phillips RL (1993) Tissue culture-induced DNA methylation variation in maize. Proceedings of the National Academy of Science of the USA 90, 8773–8776.

Koltunow A (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. The Plant Cell 5, 1425–1437.

Leblanc O, Mazzucato A (2001) Screening procedures to identify and quantify apomixis. In ‘The flowering apomixis: from mechanisms to genetic engineering’. (Eds Y Savidan, J Carman, T Dresselhaus) pp. 121–136. (CIMMYT, IRD, European Commission DG VI-FAIR: Mexico, DF)

Leblanc O, Peel J, Carman J, Savidan Y (1995) Megasporogenesis and megagametogenesis in several Tripsacum species (Poaceae). American Journal of Botany 82, 57–63.
Megasporogenesis and megagametogenesis in several Tripsacum species (Poaceae).Crossref | GoogleScholarGoogle Scholar |

Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. The Plant Journal 21, 97–108.
An efficient screen for reproductive pathways using mature seeds of monocots and dicots.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7hslGgtg%3D%3D&md5=e67b5f2392a58cd8627d6f189038cf67CAS | 10652155PubMed |

Matzk T, Prodanovic S, Baumlein H, Schubert I (2005) The inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance. The Plant Cell 17, 13–24.
The inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotlagsw%3D%3D&md5=e6a7d5033399e7397d6d1345a26396e2CAS | 15608334PubMed |

Mazzucato A, Barcaccia G, Pezzotti M, Falcinelli M (1995) Biochemical and molecular markers for investigating the mode of reproduction in the facultative apomict Poa pratensis. Sexual Plant Reproduction 8, 133–138.
Biochemical and molecular markers for investigating the mode of reproduction in the facultative apomict Poa pratensis.Crossref | GoogleScholarGoogle Scholar |

Mecchia MA, Ochogavía A, Selva JP, Laspina N, Felitti S, Martelotto LG, Spangenberg G, Echenique V, Pessino SC (2007) Genome polymorphisms and gene differential expression in a ‘back-and-forth’ ploidy-altered series of weeping lovegrass (Eragrostis curvula). Journal of Plant Physiology 164, 1051–1061.
Genome polymorphisms and gene differential expression in a ‘back-and-forth’ ploidy-altered series of weeping lovegrass (Eragrostis curvula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSmsLrJ&md5=8d06d6f900e25d408b8b97764ecbc64bCAS | 16919366PubMed |

Medina F, Risueño M, Rodríguez-García M (1981) Evolution of the cytoplasmic organelles during female meiosis in Pisum sativum L. Planta 151, 215–225.
Evolution of the cytoplasmic organelles during female meiosis in Pisum sativum L.Crossref | GoogleScholarGoogle Scholar |

Naumova T, Den Nijs A, Willense M (1993) Quantitative analysis of aposporous parthenogenesis in Poa pratensis genotypes. Acta Botanica Neerlandica 42, 299–312.

Nogler G (1984) Gametophytic apomixis. In ‘Embryology of angiosperms’. (Ed. B Johri) pp. 475–518. (Springer Verlag: Berlin)

Ochogavía AC, Cervigni G, Selva JP, Echenique V, Pessino S (2009) Variation in cytosine methylation patterns during ploidy level conversions in Eragrostis curvula. Plant Molecular Biology 70, 17–29.
Variation in cytosine methylation patterns during ploidy level conversions in Eragrostis curvula.Crossref | GoogleScholarGoogle Scholar | 19160057PubMed |

Ortiz J, Pessino S, Leblanc O, Hayward M, Quarín C (1997) Genetic fingerprinting for determining the mode of reproduction in Paspalum notatum, a subtropical apomictic forage grass. Theoretical and Applied Genetics 95, 850–856.
Genetic fingerprinting for determining the mode of reproduction in Paspalum notatum, a subtropical apomictic forage grass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1Oku7Y%3D&md5=1627e812ed403d42b1a3dc8914699cd9CAS |

Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Critical Reviews in Plant Sciences 25, 199–214.
Apomixis: developmental characteristics and genetics.Crossref | GoogleScholarGoogle Scholar |

Ozias-Akins P, van Dijk PJ (2007) Mendelian genetics of Apomixis in plants. Annual Review of Genetics 41, 509–537.
Mendelian genetics of Apomixis in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1SitQ%3D%3D&md5=53327f5c377963c27b66efd8e092b851CAS | 18076331PubMed |

Peel M, Carman G, Leblanc O (1997) Megasporocyte callose in apomictic buffelgrass, Kentucky buffelgrass, Pennisetum squamulatum Fresen, Tripsacum L. and weeping lovegrass. Crop Science 37, 724–732.
Megasporocyte callose in apomictic buffelgrass, Kentucky buffelgrass, Pennisetum squamulatum Fresen, Tripsacum L. and weeping lovegrass.Crossref | GoogleScholarGoogle Scholar |

Persson Hovmalm HA, Jeppsson N, Bartish IV (2004) RAPD analysis of diploid and tetraploid populations of Aronia points to different reproductive strategies within the genus. Hereditas 141, 301–312.
RAPD analysis of diploid and tetraploid populations of Aronia points to different reproductive strategies within the genus.Crossref | GoogleScholarGoogle Scholar | 15703047PubMed |

Polci PA (2000) Cultivo de tejidos para la obtención de variantes somaclonales de pasto llorón, Eragrostis curvula (Schrad.) Nees. Tesis de Doctorado en Biología, Universidad Nacional del Sur, Argentina.

Quarin CL, Espinoza F, Martinez E, Pessino S, Bovo O (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sexual Plant Reproduction 13, 243–249.
A rise of ploidy level induces the expression of apomixis in Paspalum notatum.Crossref | GoogleScholarGoogle Scholar |

Quesenberry KH, Dampier JM, Lee YY, Smith RL, Acuña CA (2010) Doubling the chromosome number of bahiagrass via tissue culture. Euphytica 175, 43–50.
Doubling the chromosome number of bahiagrass via tissue culture.Crossref | GoogleScholarGoogle Scholar |

Rodkiewicz B (1970) Callose in cell wall during megasporogenesis in angiosperms. Planta 93, 39–47.
Callose in cell wall during megasporogenesis in angiosperms.Crossref | GoogleScholarGoogle Scholar |

Sartor ME, Quarin CL, Espinoza F (2009) Mode of reproduction of colchicine-induced Paspalum plicatulum tetraploids. Crop Science 49, 1270–1276.
Mode of reproduction of colchicine-induced Paspalum plicatulum tetraploids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvVyrtr0%3D&md5=409753735fc72dc520d7d56e89879913CAS |

Savidan Y (2000) Apomixis: genetics and breeding. Plant Breeding Reviews 18, 13–86.

Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development – virgin births in farmers’ fields? Nature Biotechnology 22, 687–691.
Apomixis technology development – virgin births in farmers’ fields?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksV2gt70%3D&md5=85f1d02995e897ac7d53849646d034b9CAS | 15175691PubMed |

Stalker HT, Wright LN (1975) Reproduction of Eragrostis curvula (Schrad.) Nees. Journal of the Arizona Academy of Science 10, 106–110.
Reproduction of Eragrostis curvula (Schrad.) Nees.Crossref | GoogleScholarGoogle Scholar |

Streetman L (1963) Reproduction of the lovegrass, the genus Eragrostis-I. E. chloromelas Steud, E. curvula (Schrad.) Nees, E. Lehmanniana Nees and E. superba Peyr. Wrightia 3, 41–51.

Tucker M, Paech N, Willemse M, Koltunow A (2001) Dynamics of callose deposition and β-1,3-glucanase expression during reproductive events in sexual and apomictic Hieracium. Planta 212, 487–498.
Dynamics of callose deposition and β-1,3-glucanase expression during reproductive events in sexual and apomictic Hieracium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1Cgtrw%3D&md5=f25c065eb12c6bc119c9f0f6f39baa21CAS | 11525505PubMed |

Voigt P, Bashaw E (1972) Apomixis and sexuality in Eragrostis curvula. Crop Science 12, 843–847.
Apomixis and sexuality in Eragrostis curvula.Crossref | GoogleScholarGoogle Scholar |

Voigt P, Bashaw E (1976) Facultative apomixis in Eragrostis curvula. Crop Science 16, 803–805.
Facultative apomixis in Eragrostis curvula.Crossref | GoogleScholarGoogle Scholar |

Voigt P, Rethman N, Poverene M (2004) Lovegrasses. In “Warm-Season (C4) Grasses”, Monograph No. 45. (Eds LE Moser, BL Burson, LE Sollenberger) pp. 1027–1056.

Vorster T, Liebenberg H (1984) Classification of embryo sacs in the Eragrostis complex. Bothalia 15, 167–174.

Williams J, Kubelik A, Livak K, Rafalski J, Tingey S (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–6535.
DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXjslWmsA%3D%3D&md5=2b438d36c68b8169937aec717debf7c5CAS | 1979162PubMed |

Zappacosta D (2009) Contribución al conocimiento de la taxonomía y del modo reproductivo del pasto llorón, Eragrostis curvula (Schrad.) Nees. Tesis de Doctorado en Agronomía, Universidad Nacional del Sur, Argentina.