Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Floral structure and development in the dioecious Australian endemic Lomandra longifolia (Lomandraceae)

Nabil M. Ahmad A , Peter M. Martin A B and John M. Vella A
+ Author Affiliations
- Author Affiliations

A Amenity Horticulture Unit, University of Sydney Plant Breeding Institute, PMB 11, Camden, NSW 2570, Australia.

B Corresponding author. Email: pmartin@camden.usyd.edu.au

Australian Journal of Botany 56(8) 666-683 https://doi.org/10.1071/BT07223
Submitted: 17 December 2007  Accepted: 30 October 2008   Published: 15 December 2008

Abstract

The micromorphology and histology of the development of male and female flowers of the dioecious Australian endemic species Lomandra longifolia Labill. was studied by means of scanning electron microscopy and light microscopy of entire and sectioned material. Although mature flowers are functionally unisexual, in the early stages of development pistillate and staminate flowers are identical and apparently bisexual. In a sequential fashion, six perianth parts are initiated within two alternating whorls, the sepals first and the petals second; six stamens are initiated in two alternating whorls of three stamens each, the first opposite the sepals and the second opposite the petals; and last, a central gynoecium is initiated. Following initiation, the two flower types diverge developmentally when the stamens become bilobed. In male flowers, cytological analysis of the slowly growing abortive pistil shows that megasporogenesis does not occur. Pistil abortion happens before meiosis whereas the stamens continue to develop until maturity and dehiscence. In female flowers, stamen arrest occurs before the onset of meiosis in microspore mother cells, after which the pistil continues its development through megasporogenesis and megagametogenesis. In all, 14 stages of floral development of both male and female flowers have been designated. Stages 1–6 of the two flower types were common to both sexes.


Acknowledgements

We warmly thank all staff of the Electron Microscopy Unit, University of Sydney, and particularly Dr Ian Kaplin and Mr Tony Romeo for their very able help in using the SEM. We also express our deep gratitude to Dr Jane Radford, the manager of the Histopathology Laboratory, University of Sydney, for permission to work in her laboratory and for her help on numerous practical aspects. Thanks are also due to Professor R. A. McIntosh for assistance in the preparation of the manuscript. Finally, we thank Leppington Speedy® Seedlings Pty Ltd for the provision of plant material and financial support.


References


APG (1998) An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Gardens 85, 531–553.
Crossref | GoogleScholarGoogle Scholar | [verified 22 August 2008]

Bentham G (1878) ‘Flora Australiensis. Vol. VII.’ (L. Reeve & Co.: London)

Bentham G , Hooker JD (1880) ‘Genera Plantarum III.’ (Lovell Reeve & Co.: London)

Bracale I, Caporall E, Gall MG, Longo C, Merzlanl-Longo O, Rossi O, Spada A (1991) Sex determination and differentiation in Asparagus officinalis L. Plant Science 80, 67–77.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Brummitt RK (1992) ‘Vascular plant families and genera.’ (Royal Botanic Gardens, Kew: London)

Caporali E, Carboni A, Galli MG, Rossi G, Spada A, Marziani Longo GP (1994) Development of male and female flower in Asparagus officinalis. Search for point of transition from hermaphroditic to unisexual developmental pathway. Sexual Plant Reproduction 7, 239–249.
Crossref | GoogleScholarGoogle Scholar | open url image1

Caporali E, Spada A, Losa A (2000) The MADS box gene AOM1 is expressed in reproductive meristems and flowers of the dioecious species Asparagus officinalis. Sexual Plant Reproduction 13, 151–156.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity 88, 94–101.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cheng PC, Greyson RI, Walden DB (1983) Organ initiation and the development of unisexual flowers in the tassel and ear of Zea mays. American Journal of Botany 70, 450–462.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cronquist A (1981) ‘An integrated system of classification of flowering plants.’ (Columbia University Press: New York)

Dahlgren RM , Clifford HT , Yeo PF (1985) ‘The families of the monocotyledons.’ (Springer-Verlag: Berlin)

Dellaporta SL, Calderon-Urrea A (1993) Sex determination in flowering plants. The Plant Cell 5, 1241–1251.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

De Mason DA, Stolte KW, Tisserat B (1982) Floral development in Phoenix dactylifera. Canadian Journal of Botany 60, 1439–1446. open url image1

Durand B, Durand R (1991) Sex determination and reproductive organ differentiation in Mercurialis. Plant Science 80, 49–65.
Crossref | GoogleScholarGoogle Scholar | open url image1

Galli MG, Bracale M, Falavigna A, Raffaldi F, Savini C, Vigo A (1993) Different kinds of male flowers in the dioecious plant Asparagus officinalis L. Sexual Plant Reproduction 6, 16–21.
Crossref | GoogleScholarGoogle Scholar | open url image1

Grant S, Houben A, Vyskot B, Siroky J, Pan W, Macas J, Saedler H (1994a) Genetics of sex determination in flowering plants. Developmental Genetics 15, 214–230.
Crossref | GoogleScholarGoogle Scholar | open url image1

Grant S, Hunkirchen B, Saedler H (1994b) Developmental differences between male and female flowers in the dioecious plant Silene latifolia. The Plant Journal 6, 471–480.
Crossref | GoogleScholarGoogle Scholar | open url image1

Heslop-Harrison J (1964) Sex expression in flowering plants. Brookhaven Symposia in Biology No. 16, 109–125. open url image1

Janousek B (1996) Sex determination in angiosperm plants. Biologicke Listy 61, 101–122. open url image1

Krause K (1930) Liliaceae. In ‘Die Natürlichen Pflanzenfamilien’. 2nd edn. 15a. (Eds A Engler, K Prantl) pp. 227–386. (Leipzig: Engelmann)

Lazarte JE, Palser BF (1979) Morphology, vascular anatomy and embryology of pistillate and staminate flowers of Asparagus officinalis. American Journal of Botany 66, 753–764.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lee AL, Macfarlane TD (1986) Lomandra. Flora of Australia 46, 100–141. open url image1

Meagher TR (2007) Linking the evolution of gender variation to floral development. Annals of Botany 100, 165–176.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mohan Ram HY, Nath R (1964) The morphology and embryology of Cannabis sativa Linn. Phytomorphology 14, 414–429. open url image1

Napier-Thomson C (1982) Eastern Lomandra. Australian Plants 11, 274. open url image1

Park J, Ishikawa Y, Yoshida R, Kanno A, Kameya T (2003) Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Molecular Biology 51, 867–875.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. American Journal of Botany 82, 596–606.
Crossref | GoogleScholarGoogle Scholar | open url image1

Richards AJ (1986) ‘Plant breeding systems.’ (George Allen and Unwin: London)

Rudall P (1994) The ovule and embryo sac in Xanthorrhoeaceae sensu lato. Flora 189, 335–351. open url image1

Rudall P, Chase MW (1996) Systematics of Xanthorrhoeaceae sensu lato: evidence for polyphyly. Telopea 6, 629–647. open url image1

Sass JE (1958) ‘Botanical microtechnique.’ 3rd edn. (The Iowa State University Press: Ames, IA)

Sherry RA, Echard KJ, Lord EM (1993) Flower development in dioecious Spinacia oleracea (Chenopodiaceae). American Journal of Botany 80, 283–291.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ye D, Oliveira M, Veuskens J, Wu Y, Installe P, Hinnisdaels S, Truong AT, Brown Mouras A, Negrutiu I (1991) Sex determination in the dioecious Melandrium. The XP/ chromosome system allows complementary cloning strategies. Plant Science 80, 93–106.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zluvova J, Nicolas M, Berger A, Negrutiu I, Moneger F (2006) Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia. Proceedings of the National Academy of Sciences, USA 103, 18854–18859.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1