Distribution and Floristics of Terricolous Lichens in Soil Crusts in Arid and Semi-Arid New South Wales, Australia
Australian Journal of Botany
44(5) 581 - 599
Published: 1996
Abstract
This paper examines the distribution of terricolous lichens at a regional scale across seven landscape types over 60 000 km2 in western New South Wales. Data are also presented on the distribution of lichens within a geomorphic sequence of runoff and runon zones on a red earth soil near Cobar. On a regional scale, 48 taxa from 23 genera were collected from 282 sites in semi-arid and arid eastern Australia, Of these, 74% were crustose or squamulose, and the remainder (26%) were foliose. Six genera (Acarospora, Endocarpon, Catapyrenium, Diploschistes, Peltula and Xanthoparmelia) accounted for 57% of species. Landscape type was a poor predictor of lichen floristics or crust cover. Instead, a core group of species comprising Collema coccophorum, Heppia despreauxii, Endocarpon rogersii, E. simplicatum var. bisporum, E. pallidum, Psora decipiens, Peltula patellata ssp. australiensis, Catapyrenium squamulosum and Synalissa symphorea, occurred in all landscape types. Plains with red earths had the greatest mean number of species per site (11.2) and the greatest mean crust cover (27.7%). Plains of calcareous earths yielded the greatest number of species (38). Across all sites, crust cover was a poor predictor of lichen species richness. However, on landscape types with non-calcareous soils, mean crust cover explained 88% of the variation in mean number of species. Whilst there was no difference in total number of species across a sequence of geomorphic zones, crust cover was significantly greater in the interception zones (79.0%) compared with either the run-on (6.6%) or run-off (24.0%) zones. These distributional data are compared with other published and unpublished studies from similar areas in Australia. The role of terricolous crusts as indicators of ecosystem health, and the influence of land management on crust cover and subsequent landscape stability are discussed.
https://doi.org/10.1071/BT9960581
© CSIRO 1996