Apomixis and abnormal anther development in Calotis lappulacea Benth. (Compositae)
Australian Journal of Botany
16(1) 1 - 17
Published: 1968
Abstract
A comparative study was made of material collected from four localities in New South Wales and Queensland and a number of embryological aberrations were found to be common to all districts.
During microsporogenesis, certain tapetal cells not only failed to contribute to the tapetal periplasmodium but, after increasing in size, they separated from the anther wall and resembled one-, two-, or four-nucleate embryo sacs developing among the microspores. In one anther a structure was present which was very similar to a fully differentiated embryo sac. Although the pollen grains of some anthers contained male gametes, most anthers dehisced when the pollen was two-celled and some shrivelled soon after meiosis.
Megasporogenesis was followed by the formation of linear tetrads of megaspores, but embryo sac formation was the result of somatic apospory and C. lappulacea appears to be an obligate apomict. The enlarging somatic cell usually invades the nucellar lobe and replaces the megaspores but one or more such celis commonly develop also in the chalaza, and up to eight embryo sacs were found in one ovule. Enlargement of a chalazal embryo sac sometimes resulted in penetration of the ovular epidermis and its invasion of the loculus as a haustorium-like structure. Extrusion of a developing embryo sac through the micropyle was common.
Embryogeny is of the Asterad type, but vertical division of the terminal cell ca was delayed until after the basal cell cb had given rise to superposed cells m and ci. Polyembryony was common but only one embryo in each ovule reached maturity. Endosperm formation was independent of embryogeny but unless it was initiated before the globular stage of the embryo, the embryo sac collapsed and the embryo degenerated.
https://doi.org/10.1071/BT9680001
© CSIRO 1968