Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Schoenoplectus californicus (Cyperaceae) amorphous silica contribution to the silicon cycle in pampean shallow lakes: an analysis of spatio-temporal variation and silicon–lignin relations

Mara De Rito https://orcid.org/0000-0003-2134-7313 A * , Natalia Borrelli A B , Marcela Natal C and Mariana Fernández Honaine A B
+ Author Affiliations
- Author Affiliations

A Instituto de Geología de Costas y del Cuaternario, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CIC, Funes 3350, Mar del Plata, Argentina.

B Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata–CONICET, Juan B. Justo 2550, Mar del Plata, Argentina.

C Centro Marplatense de Investigaciones Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Comisión de Investigaciones Científicas, Funes 3350, Mar del Plata, Argentina.

* Correspondence to: derito.mara@gmail.com

Handling Editor: Chris Blackman

Australian Journal of Botany 72, BT23084 https://doi.org/10.1071/BT23084
Submitted: 9 October 2023  Accepted: 20 May 2024  Published: 18 June 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

Phytoliths constitute an important source of silicon in terrestrial and aquatic ecosystems. Schoenoplectus californicus (C.A.Mey.) Soják (Cyperaceae) is an important phytolith producer.

Aims

We investigated the spatio-temporal variation in phytolith content of S. californicus in shallow lakes of the Pampean region, considering biomass and its relation to soil silicon content and lignin content.

Methods

Calcination techniques were applied to quantify phytoliths. The biomass was estimated by destructive methods. Soil silicon concentration was determined through ultraviolet–visible spectrophotometry by means of the silicomolybdate method. For lignin determination, a fibre analyser and sulfuric acid were used.

Key results

No significant differences were observed in the spatio-temporal analysis. There were no differences in the biomass estimation and in the phytolith per m2 contribution. Regarding soil silicon content, when the concentration was low, the phytolith production was low. Lignin content remained constant between sites. No correlation was observed between phytolith and lignin content.

Conclusions

S. californicus is an accumulator of amorphous silica, generating a constant quantity of phytoliths over the years and between sites. The variation in some environmental conditions does not seem to be enough to be reflected in plant silica production. No relation between lignin and silica was found, perhaps due to their different roles in plant structure.

Implications

The inclusion of other wetlands with more contrasting conditions may reveal the environmental constraints for the amorphous silica production. This study shows the importance of this community as a silicon source, and the implications of its displacement by other communities or urban development.

Keywords: biomass, juncales, lignin, Pampean region, phytoliths, silicon, soil, wetlands.

References

Altamirano SM (2014) Análisis fitolítico en comunidades vegetales acuáticas y suelos asociados en la Laguna de Los Padres, Buenos Aires. Bachelor’s Degree Thesis. Universidad Nacional de Mar del Plata, Argentina.

Altamirano SM, Fernández Honaine M, Osterrieth M (2017) Amorphous silica biomineralizations in rhizomes of Schoenoplectus californicus (C.A. Meyer) Soják (Cyperaceae). In ‘Anais do 68° Congresso Nacional de Botânica e XXXVI Jornada Fluminense de Botânica. Río de Janerio, Brasil’. p. 165. (Sociedad Botanica de Brasil)

ANKOM (2005) ‘Method for determining acid detergent lignin in beakers.’ (ANKOM Technology)

APHA–AWWA–WPFC (1998) Standard methods for the examination of water and wastewater. (American Public Health Association, American Water Works Association and Water Environmental Federation: Washington DC, USA)

Benvenuto ML, Fernández Honaine M, Osterrieth M, Coronato A, Rabassa J (2013) Silicophytoliths in Holocene peatlands and fossil peat layers from Tierra del Fuego, Argentina, southernmost South America. Quaternary International 287, 20-33.
| Crossref | Google Scholar |

Bertoldi de Pomar H (1975) Los silicofitolitos: Sinopsis de su conocimiento. Darwiniana 19, 173-206.
| Google Scholar |

Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochemical Cycles 20(3), GB3023.
| Crossref | Google Scholar |

Borrelli N, Alvarez MF, Osterrieth ML, Marcovecchio JE (2010) Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in Typical Argiudolls of the Pampean Plain, Argentina: a preliminary study. Journal of Soils and Sediments 10, 983-994.
| Crossref | Google Scholar |

Borrelli N, Romanelli A, Fernández Honaine M, Farenga M, Fabiani A, Esquius KS, Osterrieth M (2023) Dissolved silica dynamics, transfer and retention in a temperate groundwater flow-through shallow lake of the Pampean Plain, Argentina. Aquatic Sciences 85(1), 10.
| Crossref | Google Scholar |

Campos AC, Labouriau LG (1969) Corpos silicosos de gramíneas dos cerrados. II. Pesquisa Agropecuaria Brasileira 4, 143-151.
| Google Scholar |

Carey JC, Fulweiler RW (2012) The terrestrial silica pump. PLoS ONE 7(12), e52932.
| Crossref | Google Scholar |

Cionchi JL, Schnack EJ, Alvarez J, Bocanegra E, Bogliano JE, Del Río JL (1982) Caracterización hidrogeológica y fisicoambiental preliminar de Laguna de Los Padres (Partido de General Pueyrredón, Prov. Buenos Aires). Centro de Geología de Costas y del Cuaternario, FCEyN, Universidad Nacional de Mar del Plata, Argentina (unpublished).

Cooke J, Leishman MR (2012) Tradeoffs between foliar silicon and carbon-based defences: evidence from vegetation communities of contrasting soil types. Oikos 121(12), 2052-2060.
| Crossref | Google Scholar |

Cornelis J-T, Ranger J, Iserentant A, Delvaux B (2010) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochemistry 97, 231-245.
| Crossref | Google Scholar |

de Lange PJ, Gardner RO, Champion PD, Tanner CC (1998) Schoenoplectus californicus (Cyperaceae) in New Zealand. New Zealand Journal of Botany 36(3), 319-327.
| Crossref | Google Scholar |

De Rito M, Fernández Honaine M, Osterrieth M, Morel E (2018) Silicophytoliths from a Pampean native tree community (Celtis ehrenbergiana community) and their representation in the soil assemblage. Review of Palaeobotany and Palynology 257, 19-34.
| Crossref | Google Scholar |

de Tombeur F, Cooke J, Collard L, Cisse D, Saba F, Lefebvre D, Burgeon V, Nacro HB, Cornelis J-T (2021) Biochar affects silicification patterns and physical traits of rice leaves cultivated in a desilicated soil (Ferric Lixisol). Plant and Soil 460, 375-390.
| Crossref | Google Scholar |

Denny M, Gaylord B (2002) The mechanics of wave-swept algae. Journal of Experimental Biology 205, 1355-1362.
| Crossref | Google Scholar | PubMed |

Díaz O, Colasurdo V, Grosman F, Sanzano P (2008) Caracterización fisicoquímica y biológica de tres lagunas pampásicas. Cuadernos del CURIHAM 14, 59-65.
| Crossref | Google Scholar |

Epstein E (1994) The anomaly of silicon in plant biology. Proceedings of the National Academy of Science 91, 11-17.
| Crossref | Google Scholar |

Exley C (2015) A possible mechanism of biological silicification in plants. Frontiers in Plant Science 6, 853.
| Crossref | Google Scholar | PubMed |

Fernández HH (2004) ‘Estimación de la Disponibilidad de pasto.’ (INTA, Estación Experimental Balcarce, Área de Producción Animal: Balcarce, Buenos Aires, Argentina)

Fernández Honaine M, Zucol A, Osterrieth M (2005) Biomineralizaciones de sílice en Celtis tala Planchon (Celtidaceae). Boletín de la Sociedad Argentina de Botánica 40, 229-239.
| Google Scholar |

Fernández Honaine M, Zucol AF, Osterrieth M (2009) Phytolith analysis of Cyperaceae from the Pampean region, Argentina. Australian Journal of Botany 57(6), 512-523.
| Crossref | Google Scholar |

Fernández Honaine M, Borrelli NL, Osterrieth M, Del Rio L (2013) Amorphous silica biomineralizations in Schoenoplectus californicus (Cyperaceae): their relation with maturation stage and silica availability. Boletín de la Sociedad Argentina de Botánica 48(2), 247-259.
| Crossref | Google Scholar |

Fernández Honaine M, Benvenuto ML, Montti L, Natal M, Borrelli NL, Álvarez MF, Altamirano SM, De Rito M, Osterrieth ML (2021) How are systematics and biological and ecological features related to silica content in plants? A study of species from southern South America. International Journal of Plant Sciences 182(3), 210-219.
| Crossref | Google Scholar |

Fernández Honaine M, Borrelli NL, Paolicchi M (2022) Producción de silicofitolitos de Schoenoplectus californicus (C.A. Meyer) Soják y su importancia en el ciclo biogeoquímico del silicio en lagunas del SE bonaerense. In ‘XI Congreso de Ecología y Manejo de Ecosistemas Acuáticos Pampeanos EMEAP 2022, Bahía Blanca, Buenos Aires, Argentina’. pp. 29–33.(Universidad Nacional del Sur: Bahia Blanca, Argentina)

Grosman F, Sanzano P (1999) Estudio ictiológico Laguna La Brava, Partido de Balcarce, Provincia de Buenos Aires. Informe Final. p. 26. Facultad de Ciencias Veterinarias. Universidad Nacional del Centro.

Guntzer F, Keller C, Meunier J-D (2012) Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development 32, 201-213.
| Crossref | Google Scholar |

Handreck KA, Jones LHP (1967) Uptake of monosilicic acid by Trifolium incarnatum (L.). Australian Journal of Biological Sciences 20(2), 483-486.
| Crossref | Google Scholar |

Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B (2006) Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant and Soil 287, 359-374.
| Crossref | Google Scholar |

Hester MW, Willis JM, Sloey TM (2016) Field assessment of environmental factors constraining the development and expansion of Schoenoplectus californicus marsh at a California tidal freshwater restoration site. Wetlands Ecology and Management 24, 33-44.
| Crossref | Google Scholar |

Hodson MJ, Guppy CN (2022) Some thoughts on silicon and carbon trade-offs in plants. Plant and Soil 477, 233-239.
| Crossref | Google Scholar |

Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Annals of Botany 96, 1027-1046.
| Crossref | Google Scholar | PubMed |

INTA (1989) Mapa de suelos de la Provincia de Buenos Aires, E 1:500000. Instituto Nacional de Tecnología Agropecuaria, Argentina.

Jones LHP, Handreck KA (1967) Silica in soils, plants, and animals. Advances in Agronomy 19, 107-149.
| Crossref | Google Scholar |

Jung H-JG, Varel VH, Weimer PJ, Ralph J (1999) Accuracy of klason lignin and acid detergent lignin methods as assessed by bomb calorimetry. Journal of Agricultural and Food Chemistry 47, 2005-2008.
| Crossref | Google Scholar | PubMed |

Labouriau LG (1983) Phytolith work in Brazil: a mini review. The Phytolitharien Newsletter 2(2), 6-10.
| Google Scholar |

Lirio JM, Núñez HJ, Chaparro MA, Sinito AM, Irurzun A, Gogorza CS (2007) Laguna La Brava, Provincia de Buenos Aires. Relaciones paleoclimáticas con Patagonia y Antártida. In ‘Actas del VI Simposio Argentino y III Latinoamericano sobre investigaciones Antárticas’. pp. 54–59.(Instituto Antartico Argentino)

Lowenstam HA (1981) Minerals formed by organisms. Science 211, 1126-1131.
| Crossref | Google Scholar | PubMed |

López D, Sepúlveda M, Vidal G (2016) Phragmites australis and Schoenoplectus californicus in constructed wetlands: development and nutrient uptake. Journal of Soil Science and Plant Nutrition 16(3), 763-777.
| Google Scholar |

Ma JF, Takahashi E (2002) ‘Soil, fertilizer, and plant silicon research in Japan.’ (Elsevier: Amsterdam, Netherlands)

Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology 127(4), 1773-1780.
| Crossref | Google Scholar | PubMed |

Maceira NO, Zelaya DK, Celemín JP, Fernández ON (2005) Evaluación preliminar del uso de la tierra y elementos para el mejoramiento de la sustentabilidad: Reserva de la Biósfera de Mar Chiquita, Provincia de Buenos Aires. Informe final. Proyecto MAB/UNESCO. INTA CD.

Motomura H, Mita N, Suzuki M (2002) Silica accumulation in long-lived leaves of Sasa veitchii (Carrière) Rehder (Poaceae–Bambusoideae). Annals of Botany 90(1), 149-152.
| Crossref | Google Scholar | PubMed |

Motomura H, Fujii T, Suzuki M (2004) Silica deposition in relation to ageing of leaf tissues in Sasa veitchii (Carriere) Rehder (Poaceae: Bambusoideae). Annals of Botany 93(3), 235-248.
| Crossref | Google Scholar | PubMed |

Novello A, Barboni D, Berti-Equille L, Mazur J-C, Poilecot P, Vignaud P (2012) Phytolith signal of aquatic plants and soils in Chad, Central Africa. Review of Palaeobotany and Palynology 178, 43-58.
| Crossref | Google Scholar |

Osterrieth M (2004) Biominerales y Biomineralizaciones. In ‘Cristalografía de Suelos’. (Ed. N García Calderon) pp. 206–218. (Sociedad Mexicana de Cristalografía: México)

Osterrieth M, Madella M, Zurro D, Alvarez MF (2009) Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean Pampas. Quaternary International 193(1–2), 70-79.
| Crossref | Google Scholar |

PELT (2000) Evaluación de la totora en el Perú (Ámbito Peruano del sistema TDPS) Parte 1. Puno. Available at http://www.alt-perubolivia.org [Verified 13 September 2023]

Piperno D (2006) ‘Phytoliths: a comprehensive guide for archaeologist and paleoecologist.’ (Altamira Press)

Porrini DP, Castro AV, Cicchino AC (2014) Los carábidos (Coleoptera: Carabidae) asociados a los remanentes de bosque nativo en la Reserva Natural Municipal Laguna de los Padres, Buenos Aires. Revista de la Sociedad Entomológica Argentina 73(1–2), 35-48.
| Google Scholar |

Pratolongo P, Kandus P (2005) Dinámica de la biomasa aérea en pajonales de Scirpus giganteus y juncales de Schoenoplectus californicus en la zona frontal del Bajo Delta del río Paraná (Argentina). Ecotrópicos 18(1), 30-37.
| Google Scholar |

Pratolongo P, Kandus P, Brinson MM (2008) Net aboveground primary production and biomass dynamics of Schoenoplectus californicus (Cyperaceae) marshes growing under different hydrological conditions. Darwiniana 46(2), 258-269.
| Google Scholar |

Raven JA (1983) The transport and function of silicon in plants. Biological Reviews 58, 179-207.
| Crossref | Google Scholar |

Richards L (1954) Pasta saturada, mezclada. In ‘Investigación de suelos. Métodos de laboratorio y procedimientos para recoger muestras’. (Ed. A Block) p. 83. (Editorial Trillas: México)

Romanelli A, Quiroz Londoño OM, Massone HE, Martinez DE, Bocanegra E (2010) El agua subterránea en el funcionamiento hidrológico de los humedales del Sudeste Bonaerense, Provincia de Buenos Aires, Argentina. Boletín Geológico y Minero 121(4), 373-386.
| Google Scholar |

Schoelynck J, Struyf E (2016) Silicon in aquatic vegetation. Functional Ecology 30(8), 1323-1330.
| Crossref | Google Scholar |

Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytologist 186(2), 385-391.
| Crossref | Google Scholar | PubMed |

Sloey TM, Hester MW (2018) Impact of nitrogen and importance of silicon on mechanical stem strength in Schoenoplectus acutus and Schoenoplectus californicus: applications for restoration. Wetlands Ecology and Management 26, 459-474.
| Crossref | Google Scholar |

Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes-a review. Journal of Plant Nutrition and Soil Science 169(3), 310-329.
| Crossref | Google Scholar |

Tur NM, Rossi JB (1976) Autoecología de Scirpus californicus. I. Crecimiento y desarrollo de la parte aérea. Boletín de la Sociedad Argentina de Botánica 17, 73-82.
| Google Scholar |

Van Soest PJ (1975) Physio-chemical aspects of fiber digestion. In ‘Digestion and metabolism in the ruminant’. (Eds IW McDonald, ACI Warner) pp. 352–366. (The University of New England Publishing Unit: Armidale, Australia)

Vital M, Daval D, Clément A, Quiroga S, Fritz B, Martínez D (2018) Importance of accessory minerals for the control of water chemistry of the Pampean aquifer, province of Buenos Aires, Argentina. Catena 160, 112-123.
| Crossref | Google Scholar |

Zar JH (Ed.) (1984) ‘Biostatistical analysis.’ (Prentice-Hall: Englewood Cliffs, NJ, USA)