The extent and applications of metal accumulation and hyperaccumulation in Philippine plants
Sarah Duddigan A * , Marilyn O. Quimado B , Edwino S. Fernando B and Mark Tibbett AA
B
Abstract
To examine the potential applications of hyperaccumulator plants in the Philippines, we reviewed current data on the extent of metal hyperaccumulation in native species and partitioning of metals within the plant tissue. Twenty-eight species had reported tissue concentrations above the hyperaccumulator threshold, 11 species were endemic to the Philippines. Nickel was present in higher concentrations in the aboveground tissue than in the belowground tissue, but the reverse was found for copper, aluminium and chromium. The fact that copper accumulates belowground rather than above, and most hyperaccumulators of nickel identified were trees, has implications for the potential of phytoextraction using native Philippines flora.
Keywords: bioaccumulation factor, hyperaccumulator, metal tolerance, metallophyte, Philippine flora, phytoextraction, phytomining, phytoremediation, translocation factor.
References
Aladesanmi OT, Oroboade JG, Osisiogu CP, Osewole AO (2019) Bioaccumulation factor of selected heavy metals in Zea mays. Journal of Health and Pollution 9, 191207.
| Crossref | Google Scholar |
Ancheta MH, Quimado MO, Tiburan CL, Jr, Doronila A, Fernando ES (2020) Copper and arsenic accumulation of Pityrogramma calomelanos, Nephrolepis biserrata, and Cynodon dactylon in Cu- and Au- mine tailings. Journal of Degraded and Mining Lands Management 7, 2201-2208.
| Crossref | Google Scholar |
Aribal LG, Marin RA, Miras NAP (2016) The metallophytes in the ultramafic soil of Mt. Kiamo in Malaybalay, Bukidnon, Philippines. Journal of Biodiversity and Environmental Science 8, 142-150.
| Google Scholar |
Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3, 643-654.
| Crossref | Google Scholar |
Balafrej H, Bogusz D, Triqui ZA, Guedira A, Bendaou N, Smouni A, Fahr M (2020) Zinc hyperaccumulation in plants: a review. Plants 9, 562.
| Crossref | Google Scholar |
Bayas QEB, Salvador SASJ, Ragragio EM, Obico JJA (2018) Taxonomic survey of nickel hyperaccumulating plants in a mining site on Luzon Island, Philippines. Philippine Journal of Systematic Biology 12, 103-108.
| Google Scholar |
Belloeil C, Jouannais P, Malfaisan C, Fernández RR, Lopez S, Gutierrez DMN, Maeder-Pras S, Villanueva P, Tisserand R, Gallopin M, Alfonso-Gonzalez D, Fuentes Marrero IM, Muller S, Invernon V, Pillon Y, Echevarria G, Iturralde RB, Merlot S (2021) The X-ray fluorescence screening of multiple elements in herbarium specimens from the Neotropical region reveals new records of metal accumulation in plants. Metallomics 13(8), 1-13.
| Crossref | Google Scholar |
Bouman RW, Keßler PJA, Telford IRH, Bruhl JJ, Strijk JS, Saunders RMK, van Welzen PC (2021) Molecular phylogenetics of Phyllanthus sensu lato (Phyllanthaceae): towards coherent monophyletic taxa. Taxon 70, 72-98.
| Crossref | Google Scholar |
Boyd RS (2013) Exploring tradeoffs in hyperaccumulator ecology and evolution. New Phytologist 199, 871-872.
| Crossref | Google Scholar |
Brooks RR, Wither ED (1977) Nickel accumulation by rinorea bengalensis (Wall.) O.K. Journal of Geochemical Exploration 7, 295-300.
| Crossref | Google Scholar |
Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7, 49-57.
| Crossref | Google Scholar |
Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends in Plant Science 3, 359-362.
| Crossref | Google Scholar |
Carvalho MTV, Amaral DC, Guilherme LRG, Aarts MGM (2013) Gomphrena claussenii, the first South-American metallophyte species with indicator-like Zn and Cd accumulation and extreme metal tolerance. Frontiers in Plant Science 4, 180.
| Crossref | Google Scholar |
Castaňares E, Lojka B (2020) Potential hyperaccumulator plants for sustainable environment in tropical habitats. IOP Conference Series: Earth and Environmental Science 528, 012045.
| Crossref | Google Scholar |
Chua J, Banua JM, Arcilla I, Orbecido A, de Castro ME, Ledesma N, Deocaris C, Madrazo C, Belo L (2019) Phytoremediation potential and copper uptake kinetics of Philippine bamboo species in copper contaminated substrate. Heliyon 5, e02440.
| Crossref | Google Scholar |
Claveria RR, De Los Santos CY, Teodoro KB, Rellosa MA, Valera NS (2010) The identification of metallophytes in the Fe and Cu-enriched environments of Brookes Point, Palawan and Mankayan, Benguet and their implications to phytoremediation. Science Diliman 21, 1-12.
| Google Scholar |
Claveria RJR, Perez TR, Perez REC, Algo JLC, Robles PQ (2019a) The identification of indigenous Cu and As metallophytes in the Lepanto Cu–Au Mine, Luzon, Philippines. Environmental Monitoring and Assessment 191, 185.
| Crossref | Google Scholar |
Claveria RJR, Perez TR, Apuan MJB, Apuan DA, Perez REC (2019b) Pteris melanocaulon Fée is an As hyperaccumulator. Chemosphere 236, 124 380.
| Crossref | Google Scholar |
Claveria RJR, Perez TR, Navarrete IA, Perez REC, Lim BCC (2020) The identification of heavy metal accumulator ferns in abandoned mines in the Philippines with applications to mine rehabilitation and metal recovery. Journal of Sustainable Mining 19, 6.
| Crossref | Google Scholar |
Corzo Remigio A, Chaney RL, Baker AJM, Edraki M, Erskine PD, Echevarria G, van der Ent A (2020) Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations. Plant and Soil 449, 11-37.
| Crossref | Google Scholar |
Dahilan JKA, Dalagan JQ (2017) Bioavailability and accumulation assessment of copper in Pityrogramma calomelanos. Philippine Journal of Science 146, 331-338.
| Google Scholar |
De Castro ME, Carandang JS, VI, Agoo EM (2020) Floristic study of an ultramafic formation in Sitio Magarwak, Sta. Lourdes, Puerto Princesa City, Palawan Island, Philippines. Biodiversitas 21, 3769-3779.
| Crossref | Google Scholar |
De la Torre JBB, Claveria RJR, Perez REC, Perez TR, Doronila AI (2016) Copper uptake by Pteris melanocaulon Fée from a copper–gold mine in Surigao del Norte, Philippines. International Journal of Phytoremediation 18, 435-441.
| Crossref | Google Scholar |
De Oliveira VH, Ullah I, Dunwell JM, Tibbett M (2020) Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environmental and Experimental Botany 171, 103925.
| Crossref | Google Scholar |
Domingo JPT, David CPC (2014) Soil amelioration potential of legumes for mine tailings. Philippine Journal of Science 143, 1-8.
| Google Scholar |
Erskine P, van der Ent A, Fletcher A (2012) Sustaining metal-loving plants in mining regions. Science 337, 1172-1173.
| Crossref | Google Scholar |
Feigl G, Varga V, Molnár Á, Dimitrakopoulos PG, Kolbert Z (2020) Different nitro-oxidative response of Odontarrhena lesbiaca plants from geographically separated habitats to excess nickel. Antioxidants 9, 837.
| Crossref | Google Scholar |
Fernando ES, Wilson PG (2021) Tristaniopsis flexuosa (Myrtaceae), a new species from ultramafic soils in the Philippines. Telopea 24, 345-349.
| Crossref | Google Scholar |
Fernando ES, Quimado MO, Trinidad LC, Doronila AI (2013) The potential use of indigenous nickel hyperaccumulators for small-scale mining in The Philippines. Journal of Degraded and Mining Lands Management 1, 21-26.
| Crossref | Google Scholar |
Fernando ES, Quimado MO, Doronila AI (2014) Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines. PhytoKeys 37, 1-13.
| Crossref | Google Scholar |
Fernando ES, Quakenbush JP, Lillo EP, Ong PS (2018) Medinilla theresae (Melastomataceae), a new species from ultramafic soils in the Philippines. PhytoKeys 113, 145-155.
| Crossref | Google Scholar |
Fernando ES, Celadiña DN, Tandang DN, Lillo EP, Quimado MO (2020) Brackenridgea (Ochnaceae) in the Philippines, with notes on foliar nickel hyperaccumulation in the genus. Gardens’ Bulletin Singapore 72, 255-273.
| Crossref | Google Scholar |
Fones HN, Preston GM, Smith JAC (2019) Variation in defence strategies in the metal hyperaccumulator plant Noccaea caerulescens is indicative of synergies and trade-offs between forms of defence. Royal Society Open Science 6, 172418.
| Crossref | Google Scholar |
Fritsch PW, Amoroso VB, Coritico FP, Penneys DS (2020) Vaccinium hamiguitanense (Ericaceae), a new species from the Philippines. Journal of the Botanical Research Institute of Texas 14, 281-287.
| Crossref | Google Scholar |
Galey ML, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Ultramafic geoecology of South and Southeast Asia. Botanical Studies 58, 19.
| Crossref | Google Scholar |
Gotera KC, Doronila AI, Claveria RJR, Perez TR, Unson JRS, Peñaranda MCR, Sebastian MB, Medina JCS (2014) Breynia cernua (Poir.) Müll.Arg. (Phyllanthaceae) is a hyperaccumulator of nickel. Asia Life Sciences 23, 231-241.
| Google Scholar |
Gotera KMC, Claveria RJR, Doronila AI, Perez TR (2020) Localization of nickel in the hyperaccumulator plant Breynia cernua (Poir.) Mull.Arg. discovered in the nickeliferous laterites of Zambales, the Philippines. International Journal of Phytoremediation 22, 127-133.
| Crossref | Google Scholar |
Hunt AJ, Anderson CWN, Bruce N, García AM, Graedel TE, Hodson M, Meech JA, Nassar NT, Parker HL, Rylott EL, Sotiriou K, Zhang Q, Clark JH (2014) Phytoextraction as a tool for green chemistry. Green Processing and Synthesis 3, 3-22.
| Crossref | Google Scholar |
Isnard S, L’Huillier L, Paul ALD, Munzinger J, Fogliani B, Echevarria G, Erskine PD, Gei V, Jaffré T, van der Ent A (2020) Novel insights into the hyperaccumulation syndrome in Pycnandra (Sapotaceae). Frontiers in Plant Science 11, 559059.
| Crossref | Google Scholar |
Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. ScienceS 193, 579-580.
| Crossref | Google Scholar |
Koelmel J, Prasad MNV, Pershell K (2015) Bibliometric analysis of phytotechnologies for remediation: global scenario of research and applications. International Journal of Phytoremediation 17, 145-153.
| Crossref | Google Scholar |
Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon M-P (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytologist 213, 537-551.
| Crossref | Google Scholar |
Mahajan P, Singla S, Kaushal J (2016) Phytoremediation of heavy metals using Brassica juneca – a review. Journal of Chemistry, Environmental Sciences and its Applications 2, 157-173.
| Crossref | Google Scholar |
Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology 39, 622-654.
| Crossref | Google Scholar |
Navarrete IA, Gabiana CC, Dumo JRE, Salmo SG, III, Guzman MALG, Valera NS, Espiritu EQ (2017) Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines. Environmental Monitoring and Assessment 189, 145.
| Crossref | Google Scholar |
Nescu V, Ciulca S, Sumalan RM, Berbecea A, Velicevici G, Negrea P, Gaspar S, Sumalan RL (2022) Physiological aspects of absorption, translocation, and accumulation of heavy metals in Silphium perfoliatum L. plants grown in a mining-contaminated soil. Minerals 12, 334.
| Crossref | Google Scholar |
Novo LAB, Covelo EF, González L (2013) Phytoremediation of amended copper mine tailings with Brassica juncea. International Journal of Mining, Reclamation and Environment 27, 215-226.
| Crossref | Google Scholar |
Pasricha S, Mathur V, Garg A, Lenka S, Verma K, Agarwal S (2021) Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: heavy metal tolerance in hyperaccumulators. Environmental Challenges 4, 100197.
| Crossref | Google Scholar |
Paz-Alberto AM, Sigua GC (2013) Phytoremediation: a green technology to remove environmental pollutants. American Journal of Climate Change 2, 71-86.
| Crossref | Google Scholar |
Pelser PB, Barcelona JF, Nickrent DL (2011) Co’s digital flora of the Philippines. Available at www.philippineplants.org
Proctor J, Baker AJM, van Balgooy MMJ, Bruijnzeel LA, Jones SH, Madulid DA (2000) Mount Bloomfield, Palawan, Philippines: forests on greywacke and serpentinized peridotite. Edinburgh Journal of Botany 57, 121-139.
| Crossref | Google Scholar |
Quimado MO, Fernando ES, Trinidad LC, Doronila A (2015) Nickel-hyperaccumulating species of Phyllanthus (Phyllanthaceae) from the Philippines. Australian Journal of Botany 63, 103-110.
| Crossref | Google Scholar |
Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist 218, 407-411.
| Crossref | Google Scholar |
Robinson AS, Zamudio SG, Caballero RB (2019) Nepenthes erucoides (Nepenthaceae), an ultramaficolous micro-endemic from Dinagat Islands Province, northern Mindanao, Philippines. Phytotaxa 423, 21-32.
| Crossref | Google Scholar |
Romeroso RB, Tandang DN, Navarrete IA (2021) New distributional record of Phyllanthus securinegoides Merr. (Phyllanthaceae) and Rinorea niccolifera Fernando (Violaceae) of Homonhon Island, Philippines. Biodiversitas Journal of Biological Diversity 22, 499-503.
| Crossref | Google Scholar |
Sanqui EEM, Claveria RJR, Perez TR (2020) Assessment of Alternanthera sessilis and Aster philippinensis as excluders in a small-scale Cu–Au processing site at Kias, Benguet, Philippines. Environmental Monitoring and Assessment 192, 402.
| Crossref | Google Scholar |
Schiavon M, Pilon-Smits EAH (2017) Selenium biofortification and phytoremediation phytotechnologies: a review. Journal of Environmental Quality 46, 10-19.
| Crossref | Google Scholar |
Susaya JP, Kim K-H, Asio VB, Chen Z-S, Navarrete I (2010) Quantifying nickel in soils and plants in an ultramafic area in Philippines. Environmental Monitoring and Assessment 167, 505-514.
| Crossref | Google Scholar |
Tamayo MN, Fernando ES, Fritsch PW (2023) Vaccinium coarctatum (Ericaceae), an ultramafic-obligate new species from the dwarf forest of Mount Redondo, Dinagat Island, Philippines. Edinburgh Journal of Botany 80, 1-12.
| Crossref | Google Scholar |
Tibbett M, Green I, Rate A, De Oliveira VH, Whitaker J (2021) The transfer of trace metals in the soil-plant-arthropod system. Science of The Total Environment 779, 146260.
| Crossref | Google Scholar |
Tisserand R, van der Ent A, Nkrumah PN, Sumail S, Echevarria G (2021) Improving tropical nickel agromining crop systems: the effects of chemical and organic fertilisation on nickel yield. Plant and Soil 465, 83-95.
| Crossref | Google Scholar |
Usman K, Al-ghouti MA, Abu-Dieyeh MH (2019) The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Scientific Reports 9, 5658.
| Crossref | Google Scholar |
van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil 362, 319-334.
| Crossref | Google Scholar |
van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015) Agromining: farming for metals in the future? Environmental Science & Technology 49, 4773-4780.
| Crossref | Google Scholar |
van der Ent A, Ocenar A, Tisserand R, Sugau JB, Echevarria G, Erskine PD (2019) Herbarium X-ray fluorescence screening for nickel, cobalt and manganese hyperaccumulator plants in the flora of Sabah (Malaysia, Borneo Island). Journal of Geochemical Exploration 202, 49-58.
| Crossref | Google Scholar |
Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffre T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restoration Ecology 12, 106-116.
| Crossref | Google Scholar |
Yashim ZI, Kehinde Israel OK, Hannatu M (2014) A study of the uptake of heavy metals by plants near metal-scrap dumpsite in Zaria, Nigeria. Journal of Applied Chemistry 2014, 394650.
| Crossref | Google Scholar |