Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Floral development and morphology of the mistletoe Antidaphne viscoidea: a case of extreme flower reduction in the sandalwood family (Santalaceae)

Favio González A , Vanessa Suaza-Gaviria B and Natalia Pabón-Mora https://orcid.org/0000-0003-3528-8078 B C
+ Author Affiliations
- Author Affiliations

A Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Sede Bogotá, Colombia.

B Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.

C Corresponding author. Email: lucia.pabon@udea.edu.co

Australian Journal of Botany 69(3) 152-161 https://doi.org/10.1071/BT21010
Submitted: 27 January 2021  Accepted: 5 April 2021   Published: 4 May 2021

Abstract

Flowers in the Antidaphne genus are among the smallest in family Santalaceae. We traced the development and morphology of flowers in A. viscoidea and compared them with those in other members of the family. Both staminate and carpellate inflorescences proliferate through collateral and serial buds, and become dimorphic when fully elongated. The former are short racemes with a terete axes and a protective, cup-like distalmost bract; the latter are spikes with flattened, furrowed and longer axes with a leafy, non-protective bract. The staminate flowers (traditionally described as apetalous) initiate from transversely flattened primordia, from which 3–5 stamens initiate opposite to variously reduced petals in an abaxial-to-adaxial direction. A massive, intrastaminal, lobed nectariferous disc, likely gynoecium-derived, is formed, with the lobes alternate to the stamens. The carpellate flowers initiate from radially symmetric primordia; they also possess three or four perianth organs. Floral monosymmetry of staminate flowers is likely due to mechanical constraint rather than to floral reduction. Our data support the current phylogenetic relationship between Antidaphne and the neotropical genera Eubrachion and Lepidoceras, all having unisexual flowers, lacking trichomes between the petals and stamens, sessile stigmas, and baccate fruits. The nectariferous disc is likely apomorphic for Santalaceae.

Keywords: Eubrachion, flower development, Lepidoceras, mistletoe flower morphology, neotropical Santalaceae, sandalwood, unisexual flowers.


References

Armbruster WS, Herzig AL (1984) Partitioning and sharing of pollinators by four sympatric species of Dalechampia (Euphorbiaceae) in Panama. Annals of the Missouri Botanical Garden 71, 1–16.
Partitioning and sharing of pollinators by four sympatric species of Dalechampia (Euphorbiaceae) in Panama.Crossref | GoogleScholarGoogle Scholar |

Aronne G, Wilcock CC, Pizzolongo P (1993) Pollination biology and sexual differentiation of Osyris alba (Santalaceae) in the Mediterranean region. Plant Systematics and Evolution 188, 1–16.
Pollination biology and sexual differentiation of Osyris alba (Santalaceae) in the Mediterranean region.Crossref | GoogleScholarGoogle Scholar |

Bahadur B, Chaturvedi ANR, Swamy NR (1986) Floral nectaries in some Cucurbitaceae. Journal of the Swamy Botanical Club 3, 148–156.

Baillon HE (1862) Deuxiéme mémoire sur les Loranthacées. Adansonia 3, 50–128.

Baker HG (1976) ‘Mistake pollination’ as a reproductive system with special reference to the Caricaceae. In ‘Tropical Trees: Variations, Breeding and Conservation’. (Eds J Burley, BT Styles) pp. 161–169. (Academic Press: London, UK)

Bean PA (1990) The identity of Osyris abyssinica var. speciosa (Santalaceae). South African Journal of Botany 56, 665–669.
The identity of Osyris abyssinica var. speciosa (Santalaceae).Crossref | GoogleScholarGoogle Scholar |

Bernardello G (2007) A systematic survey of floral nectaries. In ‘Nectaries and Nectar’. (Eds SW Nicolson, N Nepi, E Pacini) pp. 19–128 (Springer: Dordrecht, Netherlands)

Bhaskar V (1992) Pollination biology and fertilization in Santalum album L. (Santalaceae). Flora 187, 73–78.
Pollination biology and fertilization in Santalum album L. (Santalaceae).Crossref | GoogleScholarGoogle Scholar |

Braby M, Nishida K (2010) The immature stages, larval food plants and biology of Neotropical mistletoe butterflies (Lepidoptera: Pieridae). II. The Catasticta group (Pierini: Aporiina). Journal of Natural History 44, 1831–1928.
The immature stages, larval food plants and biology of Neotropical mistletoe butterflies (Lepidoptera: Pieridae). II. The Catasticta group (Pierini: Aporiina).Crossref | GoogleScholarGoogle Scholar |

Cuevas Guzmán R, Santana Michel FJ, Sánchez Rodríguez EV, Núñez López NM (2016) Cervantesiaceae: Nuevo registro de una familia naturalizada para la flora de México. Acta Biologica Colombiana 21, 431–436.
Cervantesiaceae: Nuevo registro de una familia naturalizada para la flora de México.Crossref | GoogleScholarGoogle Scholar |

Der JP, Nickrent DL (2008) A molecular phylogeny of Santalaceae (Santalales). Systematic Botany 33, 107–116.
A molecular phylogeny of Santalaceae (Santalales).Crossref | GoogleScholarGoogle Scholar |

Dettke GA, Waechter JL (2014) Estudo taxonômico das ervas-de-passarinho da Região sul do Brasil: I. Loranthaceae e Santalaceae. Rodriguésia 65, 939–953.
Estudo taxonômico das ervas-de-passarinho da Região sul do Brasil: I. Loranthaceae e Santalaceae.Crossref | GoogleScholarGoogle Scholar |

Dieringer G, Cabrera L (1994) Sexual selection of anther trichomes and sexual dimorphism in Ibervillea lindheimeri (Cucurbitaceae: Melothrieae). American Journal of Botany 81, 111–118.
Sexual selection of anther trichomes and sexual dimorphism in Ibervillea lindheimeri (Cucurbitaceae: Melothrieae).Crossref | GoogleScholarGoogle Scholar |

Dukas R (1987) Foraging behavior of three bee species in a natural mimicry system: female flowers with mimic male flowers in Ecballium elaterium (Cucurbitaceae). Oecologia 74, 256–263.
Foraging behavior of three bee species in a natural mimicry system: female flowers with mimic male flowers in Ecballium elaterium (Cucurbitaceae).Crossref | GoogleScholarGoogle Scholar | 28311999PubMed |

Eichler AW (1868) Loranthaceae. In ‘Flora Brasiliensis’. (Ed. CFP von Martius) Vol. 3, pp. 156–198. (Wilhelm Engelmann: Leipzig)

Endress PK (2012) The immense diversity of floral monosymmetry and asymmetry across Angiosperms. Botanical Review 78, 345–397.
The immense diversity of floral monosymmetry and asymmetry across Angiosperms.Crossref | GoogleScholarGoogle Scholar |

Fagerlind F (1959) Development and structure of the flower and gametophytes in the genus Exocarpos. Svensk Botanisk Tidskrift 53, 257–282.

Fahn A, Shimony C (2001) Nectary structure and ultrastructure of unisexual flowers of Ecballium elaterium (L.) A. Rich. (Cucurbitaceae) and their presumptive pollinators. Annals of Botany 87, 27–33.
Nectary structure and ultrastructure of unisexual flowers of Ecballium elaterium (L.) A. Rich. (Cucurbitaceae) and their presumptive pollinators.Crossref | GoogleScholarGoogle Scholar |

Gleason H, Cronquist A (1991) ‘Manual of Vascular Plants of Norteastern United States and Adjacent Canada’, 2nd edn. (The New York Botanical Garden: Bronx, NY, USA)

González F, Pabón-Mora N (2017a) Inflorescence and floral traits of the Colombian species of Tristerix (Loranthaceae) related to hummingbird pollination. Anales del Jardin Botanico de Madrid 74, 061
Inflorescence and floral traits of the Colombian species of Tristerix (Loranthaceae) related to hummingbird pollination.Crossref | GoogleScholarGoogle Scholar |

González F, Pabón-Mora N (2017b) Floral development and morphoanatomy in the holoparasitic Pilostyles boyacensis (Apodanthaceae, Cucurbitales) reveal chimeric half-staminate and half-carpellate flowers. International Journal of Plant Sciences 178, 522–536.
Floral development and morphoanatomy in the holoparasitic Pilostyles boyacensis (Apodanthaceae, Cucurbitales) reveal chimeric half-staminate and half-carpellate flowers.Crossref | GoogleScholarGoogle Scholar |

González F, Pabón-Mora N (2019) Flower development of Tristerix confirms irregular calyx formation and obhaplostemony as plesiomorphies in New World Loranthaceae (Santalales). International Journal of Plant Sciences 180, 403–410.
Flower development of Tristerix confirms irregular calyx formation and obhaplostemony as plesiomorphies in New World Loranthaceae (Santalales).Crossref | GoogleScholarGoogle Scholar |

Grüter C (2020) ‘Stingless Bees: Their Behaviour, Ecology and Evolution.’ (Springer: Cham, Switzerland)

Harbaugh DT, Oppenheimer HL, Wood KR, Wagner WL (2010) Taxonomic revision of the endangered Hawaiian red-flowered sandalwoods (Santalum) and discovery of an ancient hybrid species. Systematic Botany 35, 827–838.
Taxonomic revision of the endangered Hawaiian red-flowered sandalwoods (Santalum) and discovery of an ancient hybrid species.Crossref | GoogleScholarGoogle Scholar |

Howell GJ, Slater AT, Knox RB (1993) Secondary pollen presentation in angiosperms and its biological significance. Australian Journal of Botany 41, 417–438.
Secondary pollen presentation in angiosperms and its biological significance.Crossref | GoogleScholarGoogle Scholar |

Iyer H, Subramanian RB, Inamdar JA (1989) Structure, ontogeny and biology of nectaries in Luffa acutanqqula (L.) Roxb. var. amara (Lam.) Cl. Korean Journal of Botany 32, 101–108.

Jost L (1888) Zur Kenntnis der Blüthenentwickelung der Mistel. II. Entwickelung der Antheren und des Pollens. Botanische Zeitung 46, 374–388.

Kuijt J (1964) Critical observations on the parasitism of New World mistletoes. Canadian Journal of Botany 42, 1243–1278.
Critical observations on the parasitism of New World mistletoes.Crossref | GoogleScholarGoogle Scholar |

Kuijt J (1965) On the nature and action of the santalalean haustorium as exemplified by Phthirusa and Antidaphne (Loranthaceae). Acta Botanica Neerlandica 14, 278–307.
On the nature and action of the santalalean haustorium as exemplified by Phthirusa and Antidaphne (Loranthaceae).Crossref | GoogleScholarGoogle Scholar |

Kuijt J (1968) Mutual affinities of Santalalean families. Brittonia 20, 136–147.
Mutual affinities of Santalalean families.Crossref | GoogleScholarGoogle Scholar |

Kuijt J (1969) ‘The Biology of Parasitic Flowering Plants.’ (University of California Press: Berkeley, CA, USA)

Kuijt J (1986) Eremolepidaceae, Loranthaceae and Viscaceae. In ‘Flora of Ecuador’. (Eds G Harling, B Sparre) Vol. 24, pp. 1–197. (Elanders Berlings: Malmö, Sweden)

Kuijt J (1988) Monograph of the Eremolepidaceae. Systematic Botany Monographs 18, 1–60.
Monograph of the Eremolepidaceae.Crossref | GoogleScholarGoogle Scholar |

Kuijt J (2015) Santalales. In ‘The Families and Genera of Vascular Plants. Vol. 12: Flowering Plants: Eudicots; Santalales, Balanophorales’. (Eds J Kuijt, B Hansen) pp. 1–189 (Springer: Cham, Switzerland)

Leiva A (1992) Eremolepidaceae. Flora de la República de Cuba. Fontqueria 35, 3–10.

Nepi M, Ciampolini F, Pacini E (1996a) Development and ultrastructure of Cucurbita pepo nectaries of male flowers. Annals of Botany 78, 95–104.
Development and ultrastructure of Cucurbita pepo nectaries of male flowers.Crossref | GoogleScholarGoogle Scholar |

Nepi M, Pacini E, Willemse MTM (1996b) Nectary biology of Cucurbita pepo: ecophysiological aspects. Acta Botanica Neerlandica 45, 41–54.
Nectary biology of Cucurbita pepo: ecophysiological aspects.Crossref | GoogleScholarGoogle Scholar |

Nickrent DL (2017) Status of the genera Colpoon, Osyris and Rhoiacarpos in South Africa. Bothalia 47, 1–7.
Status of the genera Colpoon, Osyris and Rhoiacarpos in South Africa.Crossref | GoogleScholarGoogle Scholar |

Nickrent DL (2020) Parasitic angiosperms: How often and how many? Taxon 69, 5–27.
Parasitic angiosperms: How often and how many?Crossref | GoogleScholarGoogle Scholar |

Nickrent DL, Malécot V, Vidal-Russell R, Der JR (2010) A revised classification of Santalales. Taxon 59, 538–558.
A revised classification of Santalales.Crossref | GoogleScholarGoogle Scholar |

Nickrent DL, Anderson F, Kuijt J (2019) Inflorescence evolution in Santalales: Integrating morphological characters and molecular phylogenetics. American Journal of Botany 106, 402–414.
Inflorescence evolution in Santalales: Integrating morphological characters and molecular phylogenetics.Crossref | GoogleScholarGoogle Scholar | 30856677PubMed |

Oliver D (1864) Notes on the Loranthaceae, with a synopsis of the genera. Journal of the Proceedings of the Linnean Society, Botany 7, 90–106.

Poeppig E, Endlicher S (1838) ‘Nova Genera ac Species Plantarum, quas in Regni Chilensi Peruviano et in Terra Amazonica. Vol. 2.’ (Friderici Hofmeister: Leipzig)

Rao LN (1942) Studies in the Santalaceae. Annals of Botany 6, 151–175.
Studies in the Santalaceae.Crossref | GoogleScholarGoogle Scholar |

Ratnaningrum YWN, Indrioko S, Setiahadi R, Lilianawati B (2019) Floral structures affect on pollination events of sandalwood in four landraces along landscape gradients in Gunung Sewu, Java, Indonesia. IOP Conference Series – Earth and Environmental Science 347, 012093
Floral structures affect on pollination events of sandalwood in four landraces along landscape gradients in Gunung Sewu, Java, Indonesia.Crossref | GoogleScholarGoogle Scholar |

Rizzini CT (1952) Pars generalis prodromi monographiae Loranthacearum brasiliae terrarumque finitimarum. Archivos do Jardim Botânico do Rio Janeiro 12, 39–126.

Rizzini CT (1960) Loranthaceae. Flora of Panama. Annals of the Missouri Botanical Garden 47, 263–359.
Loranthaceae. Flora of Panama.Crossref | GoogleScholarGoogle Scholar |

Rizzini CT (1982) Loranthaceae. Flora de Venezuela. (Instituto Botánico: Caracas, Venezuela)

Ruiz H, Pavón J (1794) ‘Florae peruvianae, et chilensis prodromus, sive novorum generum plantarum peruvianarum, et chilensium descriptiones, et icones. Descripciones y láminas de los nuevos géneros de plantas de la flora del Perú y Chile’ (Imprenta de Sancha: Madrid, Spain)

Sedgley M (1982) Floral anatomy and pollen tube growth in the Quandong (Santalum acuminatum (R. Br.) A. DC.). Australian Journal of Botany 30, 601–609.
Floral anatomy and pollen tube growth in the Quandong (Santalum acuminatum (R. Br.) A. DC.).Crossref | GoogleScholarGoogle Scholar |

Smith FH, Smith EC (1943) Floral anatomy of the Santalaceae and some related forms. Oregon State Monographs. Oregon State Monographs, Studies in Botany 5, 1–93.

Stauffer HU (1961) Santalales-Studien V–VIII. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 106, 387–418.

Suaza-Gaviria V, Pabón-Mora N, González F (2016) Development and morphology of flowers in Loranthaceae. International Journal of Plant Sciences 177, 559–578.
Development and morphology of flowers in Loranthaceae.Crossref | GoogleScholarGoogle Scholar |

Suaza-Gaviria V, González F, Pabón-Mora N (2017) Comparative inflorescence development in selected Andean Loranthaceae and Viscaceae. American Journal of Botany 104, 24–38.
Comparative inflorescence development in selected Andean Loranthaceae and Viscaceae.Crossref | GoogleScholarGoogle Scholar | 28057689PubMed |

Tamla HT, Cornelius JP, Page T (2012) Reproductive biology of three commercially valuable Santalum species: development of flowers and inflorescences, breeding systems, and interspecific crossability. Euphytica 184, 323–333.
Reproductive biology of three commercially valuable Santalum species: development of flowers and inflorescences, breeding systems, and interspecific crossability.Crossref | GoogleScholarGoogle Scholar |

Van Tieghem P (1895) Sur les genres Basicarpus g. n., Stachyphyllum g. n. et Antidaphne Poepp. et Endl. de la sous-famille des Viscoidées dans la famille des Loranthacées. Bulletin delle Société Botanique de France 42, 562–573.
Sur les genres Basicarpus g. n., Stachyphyllum g. n. et Antidaphne Poepp. et Endl. de la sous-famille des Viscoidées dans la famille des Loranthacées.Crossref | GoogleScholarGoogle Scholar |

Vogel S (1981) Die Klebstoffhaare an den Antheren von Cyclanthera pedata (Cucurbitaceae). Plant Systematics and Evolution 137, 291–316.
Die Klebstoffhaare an den Antheren von Cyclanthera pedata (Cucurbitaceae).Crossref | GoogleScholarGoogle Scholar |

Vogel S (1997) Remarkable nectaries: structure, ecology, organophyletic perspectives. I. Substitutive nectaries. Flora 192, 305–333.
Remarkable nectaries: structure, ecology, organophyletic perspectives. I. Substitutive nectaries.Crossref | GoogleScholarGoogle Scholar |

Vogel S (1998) Remarkable nectaries: structure, ecology, organophyletic perspectives. IV. Miscellaneous cases. Flora 193, 225–248.
Remarkable nectaries: structure, ecology, organophyletic perspectives. IV. Miscellaneous cases.Crossref | GoogleScholarGoogle Scholar |

Wallace HM, Lee DJ (2010) Resin-foraging by colonies of Trigona sapiens and T. hockingsi (Hymenoptera: Apidae, Meliponini) and consequent seed dispersal of Corymbia torelliana (Myrtaceae). Apidologie 41, 428–435.
Resin-foraging by colonies of Trigona sapiens and T. hockingsi (Hymenoptera: Apidae, Meliponini) and consequent seed dispersal of Corymbia torelliana (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Wanntorp L, Ronse DeCraene LP (2009) Perianth evolution in the sandalwood order Santalales. American Journal of Botany 96, 1361–1371.
Perianth evolution in the sandalwood order Santalales.Crossref | GoogleScholarGoogle Scholar | 21628284PubMed |