Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Bark anatomy of Melastomataceae species in the Brazilian Cerrado, a neotropical savanna

Camilla Rozindo Dias Milanez A , Carmen Regina Marcati https://orcid.org/0000-0001-5723-6450 B * and Silvia Rodrigues Machado C *
+ Author Affiliations
- Author Affiliations

A Departamento de Ciências Biológicas, UFES – Universidade Federal do Espírito Santo, CEP 29075-910, Vitória, ES, Brazil.

B Faculdade de Ciências Agronômicas, Departamento de Ciência Florestal, Solos e Ambiente, UNESP – Universidade Estadual Paulista, CP 237, CEP 18603-970, Botucatu, SP, Brazil.

C Departamento de Botânica, UNESP – Univ Estadual Paulista, Instituto de Biociências, CP 510, CEP 18618-970, Botucatu, SP, Brazil.


Handling Editor: Garry Cook

Australian Journal of Botany 69(8) 500-515 https://doi.org/10.1071/BT20139
Submitted: 3 November 2020  Accepted: 5 July 2021   Published: 29 September 2021

© 2021 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

The bark (all tissues outside the cambium) is a morphologically diverse and functionally important part of the stem. Outer bark (periderm) has a protective function, and inner bark (secondary phloem) is involved in the long-distance transport. In savannas, the relationship between bark structure, life form and habitat is controversial. We studied the morphology and anatomy of bark of Melastomataceae species with different habits growing at different sites in the Brazilian Cerrado (a neotropical savanna), from well-drained to temporarily or permanently waterlogged soils. Bark samples were processed by standard anatomical techniques. Regarding the outer bark, the species studied are grouped into two main categories: with a single periderm (with nonstratified or stratified phelem) and with multiple periderms, that is, with a rhytidome. Although a formal test has not been carried out in this work to assess the existence of a correlation between the microscopic structure of the periderm and the habit and growth distribution of plants, there seems to be no correlation for most of the species studied here, except for a subshrub species inhabiting waterlogged soils. Sclerified cells, calcium oxalate crystals, and phenolic content are abundant through the secondary phloem. Microscopic bark features are useful to distinguish species.

Keywords: anatomy, bark, Cerrado, inner bark, Melastomataceae, microscopic characteristics, outer bark, periderm, secondary phloem.


References

Angeles G (1992) The periderm of flooded and non-flooded Ludwigia octovalvis (Onagaraceae). IAWA Bulletin 13, 195–200.
The periderm of flooded and non-flooded Ludwigia octovalvis (Onagaraceae).Crossref | GoogleScholarGoogle Scholar |

Angyalossy V, Pace MR, Evert RF, et al. (2016) IAWA list of microscopic bark features. IAWA Journal 37, 517–615.
IAWA list of microscopic bark features.Crossref | GoogleScholarGoogle Scholar |

Angyalossy-Alfonso V, Richter HG (1991) Wood and bark anatomy of Buchenavia Eichl. (Combretaceae). IAWA Bulletin 12, 123–141.

Baumgratz JFA, Rodrigues KF, Chiavegatto B, et al. (2013) ‘Melastomataceae in lista de espécies da flora do Brasil’. (Jardim Botânico do Rio de Janeiro: Rio de Janeiro). http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB1619 [Verified 10 June 2021]

Blagitz M, Machado SR, Marcati CR (2019) Savanna trees do not have thicker outer bark than forest trees of two tropical species. Flora 251, 20–31.
Savanna trees do not have thicker outer bark than forest trees of two tropical species.Crossref | GoogleScholarGoogle Scholar |

Bukatsch F (1972) Bemerkungen zur Doppelfarbung Astrablau-Safranin. Mikrokosmos 61, 255

Campilho A, Nieminen K, Ragni L (2020) The development of the periderm: the final frontier between a plant and its environment. Current Opinion in Plant Biology 53, 10–14.
The development of the periderm: the final frontier between a plant and its environment.Crossref | GoogleScholarGoogle Scholar | 31593816PubMed |

Carlquist S (1975) ‘Ecological strategies of xylem evolution’. (University of California Press: Berkeley, CA, USA)
| Crossref |

Chamberlain CJ (1932) ‘Methods in plant histology’, 5th edn. (University Chicago Press: Chicago, IL, USA)
| Crossref |

Costa CG (1977) Miconia theaezans (Bonp.) Cogn. (Melastomataceae) considerações anatômicas. Rodriguesia 43, 7–92.

Costa CG, Coradin VTR, Czarneski CM, Pereira BA (1997) Bark anatomy of arborescent Leguminosae of Cerrado and gallery forest of central Brazil. IAWA Journal 18, 385–399.
Bark anatomy of arborescent Leguminosae of Cerrado and gallery forest of central Brazil.Crossref | GoogleScholarGoogle Scholar |

Cunha AR, Martins D (2009) Classificação climática para os municípios de Botucatu e São Manuel, SP. Irriga 14, 1–11.
Classificação climática para os municípios de Botucatu e São Manuel, SP.Crossref | GoogleScholarGoogle Scholar |

Eckblad JW (1991) How many samples should be taken? Bioscience 41, 346–348.
How many samples should be taken?Crossref | GoogleScholarGoogle Scholar |

Esau K (1969) Phloem. In ‘Anatomy of dicotyledons’. (Ed CRC Metcalfe) pp. 181–189. (Claredon Press: Oxford, UK)

Esau K, Cheadle VI, Gifford EM (1953) Comparative structure and possible trends of specialization of the phloem. American Journal of Botany 40, 9–19.
Comparative structure and possible trends of specialization of the phloem.Crossref | GoogleScholarGoogle Scholar |

Evert RF (1963) The cambium and seasonal development of the phloem in Pyrus malus. American Journal of Botany 50, 149–159.
The cambium and seasonal development of the phloem in Pyrus malus.Crossref | GoogleScholarGoogle Scholar |

Evert RF (1990) Dicotyledons. In ‘Sieve elements: comparative structure, induction and development’. (Eds HD Behnke, RD Sjoulund) pp. 103–137. (Springer-Verlag: Berlin, Germany)

Evert RF (2006) ‘Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function and development’, 3rd edn. (Wiley: Hoboken, NJ, USA)

Franceschi VR, Horner HT (1980) Calcium oxalate crystals in plants. The Botanical Review 46, 361–427.
Calcium oxalate crystals in plants.Crossref | GoogleScholarGoogle Scholar |

Franklin GL (1945) Preparation of thin sections of synthetic resins and wood–resin composites, and a new macerating method for wood. Nature 155, 51
Preparation of thin sections of synthetic resins and wood–resin composites, and a new macerating method for wood.Crossref | GoogleScholarGoogle Scholar |

Gerrits PO (1991) ‘The application of glycol metacrylate histotechnology: some fundamental principles.’ (State University Groningen: Groningen, Netherlands)

Goldenberg R, Baumgratz JFA, Souza MLDR (2012) Taxonomia de Melastomataceae no Brasil: retrospectiva, perspectivas e chave de identificação para gêneros. Rodriguesia 63, 145–161.
Taxonomia de Melastomataceae no Brasil: retrospectiva, perspectivas e chave de identificação para gêneros.Crossref | GoogleScholarGoogle Scholar |

Jackson MB, Fenning TM, Drew TM, Saker LR (1985) Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen. Planta 165, 486–492.
Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen.Crossref | GoogleScholarGoogle Scholar | 24241221PubMed |

Jensen KH, Zwieniecki MA (2013) Physical limits to leaf size in tall trees. Physical Review Letters 110, 018104
Physical limits to leaf size in tall trees.Crossref | GoogleScholarGoogle Scholar | 23383844PubMed |

Johansen DA (1940) ‘Plant microtechnique.’ (McGraw-Hill Co: New York, NY, USA)

Jyske T, Hμlttä T (2015) Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytologist 205, 102–115.
Comparison of phloem and xylem hydraulic architecture in Picea abies stems.Crossref | GoogleScholarGoogle Scholar |

Kolalite MR, Oskolski AA, Richter HG, Schmitt U (2003) Bark anatomy and intercellular canals in the stem of Delarbrea paradoxa (Araliaceae). IAWA Journal 24, 139–154.
Bark anatomy and intercellular canals in the stem of Delarbrea paradoxa (Araliaceae).Crossref | GoogleScholarGoogle Scholar |

Lawes MJ, Richards A, Dathe J, Midgley JJ (2011) Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecology 212, 2057–2069.
Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia.Crossref | GoogleScholarGoogle Scholar |

Machado SR, Marcati CR, Morretes BL, Angyalossy V (2005) Comparative bark anatomy of root and stem in Styrax camporum Pohl. (Styracaceae). IAWA Journal 26, 477–487.
Comparative bark anatomy of root and stem in Styrax camporum Pohl. (Styracaceae).Crossref | GoogleScholarGoogle Scholar |

Marschner H (1986) ‘Mineral nutrition of higher plants.’ (Academic Press: New York, NY, USA)

Medeiros JD, Morretes BL (1994) Anatomia da madeira e da casca de Miconia cabucu Hoehne (Melastomataceae). Insula 23, 15–34.

Mendonça RC, Felfili JM, Walter BMT, Silva Júnior MC, Rezende AV, Filgueiras TS, Nogueira PE (1998) Flora vascular do Cerrado. In ‘Cerrado: ambiente e flora’. (Eds SM Sano, SP Almeida) pp. 289–539. (Embrapa-CPAC: Planaltina, Brazil)

Metcalfe CR, Chalk L (1950) ‘Anatomy of the dicotyledons’, vol. 2. (Claredon Press: Oxford, UK)

Milanez CRD, Marcati CR, Machado SR (2017) Trabeculae and Al-accumulation in the wood cells of Melastomataceae species from Brazilian savanna. Botany 95, 521–530.
Trabeculae and Al-accumulation in the wood cells of Melastomataceae species from Brazilian savanna.Crossref | GoogleScholarGoogle Scholar |

Miranda HS, Bustamante MMC, Miranda AC (2002) The fire factor. In ‘The Cerrados of Brazil: ecology and natural history of a Neotropical savanna’. (Eds PS Oliveira, RJ Marquis) pp. 51–68. (Columbia University Press: New York, NY, USA)

Nardini A, Lo Gullo MA, Salleo S (2011) Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Science 180, 604–611.
Refilling embolized xylem conduits: is it a matter of phloem unloading?Crossref | GoogleScholarGoogle Scholar | 21421408PubMed |

Nikinmaa E, Hμlttä T, Hari P, Kolari P, Mäkelä A, Sevanto S, Vesala T (2013) Assimilate transport in phloem sets conditions for leaf gas exchange. Plant, Cell & Environment 36, 655–669.
Assimilate transport in phloem sets conditions for leaf gas exchange.Crossref | GoogleScholarGoogle Scholar |

Nikinmaa E, Sievänen R, Hμlttä T (2014) Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown. Annals of Botany 114, 653–666.
Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown.Crossref | GoogleScholarGoogle Scholar | 24854169PubMed |

Niklas KJ (1999) The mechanical role of bark. American Journal of Botany 86, 465–469.
The mechanical role of bark.Crossref | GoogleScholarGoogle Scholar | 10205065PubMed |

O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by Toluidine blue O. Protoplasma 59, 368–373.
Polychromatic staining of plant cell walls by Toluidine blue O.Crossref | GoogleScholarGoogle Scholar |

Oliveira PS, Marquis RJ (2002) ‘The Cerrados of Brazil: ecology and natural history of a Neotropical savanna.’ (Columbia University Press: New York, NY, USA)

Paine CET, Stahl C, Courtois EA, Patiño S, Sarmiento C, Baraloto C (2010) Functional explanations for variation in bark thickness in tropical rain forest trees. Functional Ecology 24, 1202–1210.
Functional explanations for variation in bark thickness in tropical rain forest trees.Crossref | GoogleScholarGoogle Scholar |

Paiva EAS (2021) Do calcium oxalate crystals protect against herbivory? The Science of Nature 108, 24
Do calcium oxalate crystals protect against herbivory?Crossref | GoogleScholarGoogle Scholar | 34043088PubMed |

Paiva EAS, Machado SR (2005) Role of intermediary cells in Peltodon radicans (Lamiaceae) in the transfer of calcium and formation of calcium oxalate crystals. Brazilian Archives of Biology and Technology 48, 147–153.
Role of intermediary cells in Peltodon radicans (Lamiaceae) in the transfer of calcium and formation of calcium oxalate crystals.Crossref | GoogleScholarGoogle Scholar |

Parameswaran N (1980) Some remarks on the nomenclature of fibres, sclereids and fibre-sclereids in the secondary phloem of trees. IAWA Bulletin 1, 130–132.
Some remarks on the nomenclature of fibres, sclereids and fibre-sclereids in the secondary phloem of trees.Crossref | GoogleScholarGoogle Scholar |

Pásztory Z, Mohácsiné IR, Gorbacheva G, Bμrcsμk Z (2016) The utilization of tree bark. Bio Research 11, 7859–7888.

Ragni L, Greb T (2018) Secondary growth as a determinant of plant shape and form. Seminars in Cell and Developmental Biology 79, 58–67.
Secondary growth as a determinant of plant shape and form.Crossref | GoogleScholarGoogle Scholar | 28864343PubMed |

Renner SS, Triebel D, Almeda F, Stone D, Ulloa CU, Michelangeli FA, Goldenberg R, Cifuentes HM (2013) Melastomataceae. Net: a site with information on the biodiversity of Melastomataceae. http://www.melastomataceae.net/ [Verified 10 June 2021]

Richter HG, Mazzoni-Viveiros SC, Alves ES, Luchi AE, Costa CG (1996) Padronização de critérios para a descrição anatômica da casca: lista de características e glossário de termos. Instituto Florestal Séries Registros São Paulo 16, 1–25.

Romero C, Bolker BM (2008) Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian Amazon. Canadian Journal of Forest Research 38, 611–618.
Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian Amazon.Crossref | GoogleScholarGoogle Scholar |

Romero C, Bolker BM, Edwards CE (2009) Stem responses to damage: the evolutionary ecology of Quercus species in contrasting fire regimes. New Phytologist 182, 261–271.
Stem responses to damage: the evolutionary ecology of Quercus species in contrasting fire regimes.Crossref | GoogleScholarGoogle Scholar |

Rosell JA (2016) Bark thickness across the angiosperms: more than just fire. New Phytologist 211, 90–102.
Bark thickness across the angiosperms: more than just fire.Crossref | GoogleScholarGoogle Scholar |

Rosell JA, Olson ME (2014) The evolution of bark mechanics and storage across habitats in a clade of tropical trees. American Journal of Botany 101, 764–777.
The evolution of bark mechanics and storage across habitats in a clade of tropical trees.Crossref | GoogleScholarGoogle Scholar | 24812111PubMed |

Rosell JA, Gleason S, Méndez-Alonzo R, Chang Y, Westoby M (2014) Bark functional ecology: evidence for tradeoffs, functional coordination and environment producing bark diversity. New Phytologist 201, 486–497.
Bark functional ecology: evidence for tradeoffs, functional coordination and environment producing bark diversity.Crossref | GoogleScholarGoogle Scholar |

Roth K (1981) ‘Structural patterns of tropical barks.’ (Gebrüder Borntraeger: Berlin, Germany)

Salatino A (1993) Chemical ecology and the theory of oligotrophic scleromorphism. Anais da Academia Brasileira Ciências 65, 1–13.

Sass JE (1951) ‘Botanical microtechinique’, 2nd edn. pp. 1–228. (Iowa State College: Ames, IA, USA)

Silva MS, Santos FSR, Silva CRA, Santos NC, Silva LB (2015) Systematic wood anatomy of Huberia, Miconia and Tibouchina (Melastomataceae). IAWA Journal 36, 326–337.
Systematic wood anatomy of Huberia, Miconia and Tibouchina (Melastomataceae).Crossref | GoogleScholarGoogle Scholar |

Soffiatti P, Angyalossy-Alfonso V (1999) Estudo anatômico comparative do lenho e da casca de duas espécies de Eugenia L. (Myrtaceae). Revista Brasileira de Botânica 22, 175–184.

Trockenbrodt M (1990) Survey and discussion of the terminology used in bark anatomy. IAWA Bulletin 11, 141–166.
Survey and discussion of the terminology used in bark anatomy.Crossref | GoogleScholarGoogle Scholar |

Vergílio PCB, Marcati CR (2017) Adaptive and diagnostic significance of the bark of Stryphnodendron polyphyllum (Leguminosae) from the Cerrado. Australian Journal of Botany 65, 157–171.
Adaptive and diagnostic significance of the bark of Stryphnodendron polyphyllum (Leguminosae) from the Cerrado.Crossref | GoogleScholarGoogle Scholar |

Zahur MS (1959) Comparative study of secondary phloem of 423 species of wood dicotyledons belonging to 85 families. Cornell University Agricultural Experiment Station Memoir 358, 160