Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Seed dormancy and germination in different populations of the Argentinan endemic halophyte grass, Sporobolus phleoides (Poaceae: Chloridoideae)

Geraldina Alicia Richard A C D , María Carolina Cerino A C , José Francisco Pensiero A C and Juan Marcelo Zabala B
+ Author Affiliations
- Author Affiliations

A Cátedra de Botánica Sistemática Agronómica, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, 86-Kreder 2805, 3080HOF, Esperanza, República Argentina.

B Cátedra de Genética y Mejoramiento Vegetal y Animal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, 86-Kreder 2805, 3080HOF, Esperanza, República Argentina.

C Consejo Nacional de Investigaciones Científicas y Técnicas, República Argentina.

D Corresponding author. Email: grichard@santafe-conicet.gov.ar

Australian Journal of Botany 64(6) 492-500 https://doi.org/10.1071/BT15285
Submitted: 13 December 2015  Accepted: 3 August 2016   Published: 12 September 2016

Abstract

Sporobolus phleoides Hack. is an endemic grass of Argentina that is considered an important genetic resource for saline environments. Knowledge of its germination behaviour is an indispensable requirement for the future potential use of this species. Thus, the effects of different factors on germination were evaluated in six representative populations collected from plants cultivated in a uniform environment. In addition, we investigated how the different parts of the seed contributed to dormancy and intraspecific variability. S. phleoides has non-deep physiological dormancy that appeared to be related to its testa. Thereby, dormancy was completely removed with puncturing treatments. High levels of germination were also obtained in seeds stratified at 8°C over 100 days in a solution of nitrates. After-ripening treatment did not have a significant effect in breaking dormancy. Similar germination behaviour and dormancy levels were observed in the different populations, especially when they were subjected to cold stratification. Although further work is needed, cold stratification appears to be the major factor in determining the time of seedling establishment in natural environments for this species.

Additional keywords: cold stratification, nitrates, after-ripening, non-deep physiological dormancy, seed coat.


References

Adkins SW, Bellairs SM, Loch DS (2002) Seed dormancy mechanisms in warm season grass species. Euphytica 126, 13–20.
Seed dormancy mechanisms in warm season grass species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFyltLY%3D&md5=b9d727245d0061830889a14b1e597ed1CAS |

Andrews TS (1995) Dispersal of seeds of giant Sporobolus spp. after ingestion by grazing cattle. Australian Journal of Experimental Agriculture 35, 353–356.
Dispersal of seeds of giant Sporobolus spp. after ingestion by grazing cattle.Crossref | GoogleScholarGoogle Scholar |

Andrews TS, Jones CE, Whalley RDB (1997) Factors affecting the germination of Giant Parramatta grass (Sporobolus indicus). Australian Journal of Experimental Agriculture 37, 439–446.
Factors affecting the germination of Giant Parramatta grass (Sporobolus indicus).Crossref | GoogleScholarGoogle Scholar |

Arc E, Galland M, Godin B, Cueff G, Rajjou L (2013) Nitric oxide implication in the control of seed dormancy and germination. Frontiers in Plant Science 4, 346
Nitric oxide implication in the control of seed dormancy and germination.Crossref | GoogleScholarGoogle Scholar | 24065970PubMed |

Aronson JA (1989) ‘Haloph, a data base of salt tolerant plants of the world.’ (Office of Arid land Studies: University of Arizona: Tucson, Spain)

Astegiano ME (1989) Biología reproductiva de Sporobolus indicus (Poaceae) en relación a la interacción gametofito-esporofito. Kurtziana 20, 65–94.

Baskin CC, Baskin JM (1998). Ecology of seed dormancy and germination in grasses. ‘In population biology of grasses’. (Ed. GP Cheplick) pp. 30–83. (Cambridge University Press: Cambridge, UK)

Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Science Research 14, 1–16.
A classification system for seed dormancy.Crossref | GoogleScholarGoogle Scholar |

Baskin CC, Baskin JM (2014) ‘Seeds: ecology, biogeography, and evolution of dormancy and germination.’ (2nd edn) (Elsevier Academic: San Diego, CA, USA)

Baskin CC, Thompson KN, Baskin JM (2006) Mistakes in germination ecology and how to avoid them. Seed Science Research 16, 165–168.
Mistakes in germination ecology and how to avoid them.Crossref | GoogleScholarGoogle Scholar |

Batlla D, Benech-Arnold RL (2010) Predicting changes in dormancy level in natural seed soil banks. Plant Molecular Biology 73, 3–13.
Predicting changes in dormancy level in natural seed soil banks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlShtbk%3D&md5=456125114e7998906a8396891168c4d6CAS | 20091421PubMed |

Bewley JD, Black M (1994) ‘Seeds: physiology of development and germination.’ (2nd edn) (Plenum Press: London)

Bianchi AR, Cravero SC (2010) ‘Atlas climático digital de la República Argentina.’ (INTA: Salta, Argentina)

Brandenburg D (2003) Notes on free pericarps in grasses (Poaceae). Journal of the Kentucky Academy of Science 64, 114–120.

Cabrera AL (1994) ‘Enciclopedia Argentina de agricultura y jardinería, Tomo II, Fascículo 1: regiones fitogeográficas Argentinas.’ (ACME: Buenos Aires)

Dekker J, Hargrove M (2002) Weedy adaptation in Setaria spp. V. Effects of gaseous environment on giant foxtail (Setaria faberii) (Poaceae) seed germination. American Journal of Botany 89, 410–416.
Weedy adaptation in Setaria spp. V. Effects of gaseous environment on giant foxtail (Setaria faberii) (Poaceae) seed germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslGgsA%3D%3D&md5=db0dcf131e91233974e9ae573f8f484bCAS | 21665636PubMed |

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo YC (2011) InfoStat ver. 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available at http://www.infostat.com.ar

Duclos DV, Rayb DT, Johnson DJ, Taylora AG (2013) Investigating seed dormancy in switchgrass (Panicum virgatum L.): understanding the physiology and mechanisms of coat-imposed seed dormancy. Industrial Crops and Products 45, 377–387.
Investigating seed dormancy in switchgrass (Panicum virgatum L.): understanding the physiology and mechanisms of coat-imposed seed dormancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOgsbY%3D&md5=8f0d71fe5bf9f6dd022812ec74088b42CAS |

Ferrari L (1999) Efectos de la temperatura y de pretratamientos en la germinación de Bothriochloa laguroides (DC.) Herter Y Chaetotropis elongata (Kunth) Björkman. Revista Brasileira de Sementes 21, 84–87.
Efectos de la temperatura y de pretratamientos en la germinación de Bothriochloa laguroides (DC.) Herter Y Chaetotropis elongata (Kunth) Björkman.Crossref | GoogleScholarGoogle Scholar |

Ferrari L (2008) ‘Bases fisiológicas de la germinación y dormición en Sporobolus indicus (L.) R.Br.’ PhD thesis. Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Córdoba, Spain.

Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytologist 171, 501–523.
Seed dormancy and the control of germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVertbw%3D&md5=d06fe0d7e82cec668cc608091c28692aCAS | 16866955PubMed |

Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annual Review of Plant Biology 59, 387–415.
Molecular aspects of seed dormancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqsbw%3D&md5=f0d03e076e121a69ea8994870ff58c41CAS | 18257711PubMed |

GeoINTA (2008) INTA, Buenos Aires. Available at http://geointa.inta.gov.ar/ [Verified 3 November 2015].

Glison N, Viega L, Cornaglia P, Gutierrez L, Speranza P (2015) Variability in germination behaviour of Paspalum dilatatum Poir. seeds is genotype dependent. Grass and Forage Science 70, 144–153.
Variability in germination behaviour of Paspalum dilatatum Poir. seeds is genotype dependent.Crossref | GoogleScholarGoogle Scholar |

Graeber KAI, Nakabayashi K, Miatton E, Leubner‐Metzger G, Soppe WJ (2012) Molecular mechanisms of seed dormancy. Plant, Cell & Environment 35, 1769–1786.
Molecular mechanisms of seed dormancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12itr3K&md5=3c359b81e39b82e39caf4905810e63e4CAS |

Gul B, Ansari R, Flowers TJ, Khan MA (2013) Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany 92, 4–18.
Germination strategies of halophyte seeds under salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSnsA%3D%3D&md5=931466c986ef54557845d0e0e590cb39CAS |

Hay FR, Probert RJ (2013) Advances in seed conservation of wild plant species: a review of recent research. Conservation Physiology 1,
Advances in seed conservation of wild plant species: a review of recent research.Crossref | GoogleScholarGoogle Scholar | 27293614PubMed |

Hu XW, Wu YP, Ding XY, Zhang R, Wang YR, Baskin JM, Baskin CC (2014) Seed dormancy, seedling establishment and dynamics of the soil seed bank of Stipa bungeana (Poaceae) on the Loess Plateau of Northwestern China. PLoS One 9,
Seed dormancy, seedling establishment and dynamics of the soil seed bank of Stipa bungeana (Poaceae) on the Loess Plateau of Northwestern China.Crossref | GoogleScholarGoogle Scholar | 25396423PubMed |

Huang Z, Dong M, Gutterman Y (2004) Caryopsis dormancy, germination and seedling emergence in sand, of Leymus racemosus (Poaceae), a perennial sand-dune grass inhabiting the Junggar Basin of Xinjiang, China. Australian Journal of Botany 52, 519–528.
Caryopsis dormancy, germination and seedling emergence in sand, of Leymus racemosus (Poaceae), a perennial sand-dune grass inhabiting the Junggar Basin of Xinjiang, China.Crossref | GoogleScholarGoogle Scholar |

Joshi AJ, Mali BS, Hinglajia H (2005) Salt tolerance at germination and early growth of two forage grasses growing in marshy habitats. Environmental and Experimental Botany 54, 267–274.
Salt tolerance at germination and early growth of two forage grasses growing in marshy habitats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslygu70%3D&md5=99ccda15bdc3dd70ed05d8d175b92448CAS |

Khan MA, Gulzar S (2003) Light, salinity and temperature effects on the seed germination of perennial grasses. American Journal of Botany 90, 131–134.
Light, salinity and temperature effects on the seed germination of perennial grasses.Crossref | GoogleScholarGoogle Scholar | 21659088PubMed |

Khan MA, Ungar IA (2001) Effect of germination promoting compounds on the release of primary and salt-enforced seed dormancy in the halophyte Sporobolus arabicus Boiss. Seed Science and Technology 29, 299–306.

Lodge GM, Whalley RDB (1981) Establishment of warm-and cool-season native perennial grasses on the north-west slopes of New South Wales. I. Dormancy and germination. Australian Journal of Botany 29, 111–119.
Establishment of warm-and cool-season native perennial grasses on the north-west slopes of New South Wales. I. Dormancy and germination.Crossref | GoogleScholarGoogle Scholar |

Maguire JD (1962) Speed of germination – aid in selection and evaluation for seedling emergence and vigor. Crop Science 2, 176–177.
Speed of germination – aid in selection and evaluation for seedling emergence and vigor.Crossref | GoogleScholarGoogle Scholar |

Manz B, Müller K, Kucera B, Volke F, Leubner-Metzger G (2005) Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiology 138, 1538–1551.
Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvV2ksrY%3D&md5=9e1e7d1a797b69837373ad885fc511eaCAS | 15980194PubMed |

Martínez ML, Valverde T, Moreno-Casasola P (1992) Germination response to temperature, salinity, light and depth of sowing of ten tropical dune species. Oecologia 92, 343–353.
Germination response to temperature, salinity, light and depth of sowing of ten tropical dune species.Crossref | GoogleScholarGoogle Scholar |

Matus-Cádiz MA, Hucl P, Perron CE, Tyler RT (2003) Genotype × environment interaction for grain color in hard white spring wheat. Crop Science 43, 219–226.
Genotype × environment interaction for grain color in hard white spring wheat.Crossref | GoogleScholarGoogle Scholar |

Meyer SE, Beckstead J, Allen PS, Pullman H (1995) Germination ecophysiology of Leymus cinereus (Poaceae). International Journal of Plant Sciences 156, 206–215.
Germination ecophysiology of Leymus cinereus (Poaceae).Crossref | GoogleScholarGoogle Scholar |

Meyer SE, Debaene-Gill SB, Allen PS (2000) Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss, and priming effects in Elymus elymoides. Seed Science Research 10, 213–223.
Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss, and priming effects in Elymus elymoides.Crossref | GoogleScholarGoogle Scholar |

Persad NK (1980) Sporobolus – a serious weed in improved tropical and sub-tropical pastures. Tropical Pest Management 26, 430–433.
Sporobolus – a serious weed in improved tropical and sub-tropical pastures.Crossref | GoogleScholarGoogle Scholar |

Ragonese AE (1967) Vegetación y ganadería en la Facultad de Agronomía, Univ. Nacional de La Pampa. República Argentina. Colección Científica del INTA 5, 1–218.

Rana N, Wilder BJ, Sellers BA, Ferrell JA, MacDonald GE (2012) Effects of environmental factors on seed germination and emergence of smutgrass (Sporobolus indicus) varieties. Weed Science 60, 558–563.
Effects of environmental factors on seed germination and emergence of smutgrass (Sporobolus indicus) varieties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1eis7nF&md5=290cb3df7c755b89d0819bee2c0e8cdaCAS |

Richard GA, Pensiero JF, Cerino MC, Galati BG, Gutiérrez HF (2015) Reproductive biology of Sporobolus phleoides Hack. (Poaceae), an endemic halophyte grass of Argentina. Plant Systematics and Evolution
Reproductive biology of Sporobolus phleoides Hack. (Poaceae), an endemic halophyte grass of Argentina.Crossref | GoogleScholarGoogle Scholar |

Roemmich AR, Butler JL, Larson GE, Turnipseed EB (2012) Germination response of prairie dropseed and hairy goldaster to stratification and temperature. Prairie Naturalist 44, 30–38.

Rogers ME, Craig AD, Munns R, Colmer TD, Nichols PGH, Malcolm CV, Barrett-Lennard EG, Brown AJ, Semple WS, Evans PM, Cowley K, Hughes SJ, Snowball R, Bennett SJ, Sweeney GC, Dear BS, Ewing M (2005) The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Australian Journal of Experimental Agriculture 45, 301–329.
The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview.Crossref | GoogleScholarGoogle Scholar |

Sarath G, Bethke PC, Jones R, Baird LM, Hou G, Mitchell RB (2006) Nitric oxide accelerates seed germination in warm-season grasses. Planta 223, 1154–1164.
Nitric oxide accelerates seed germination in warm-season grasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12qtbo%3D&md5=9b24ef8f288c3826e5826bd55e985b4bCAS | 16369800PubMed |

Satyamurthy TV (1983) Structure and development of the caryopsis in Sporobolus coromandelianus (Retz.) Kunth. Current Science 52, 549–550.

Sharif-Zadeh F, Murdoch AJ (2001) The effects of temperature and moisture on after-ripening of Cenchrus ciliaris seeds. Journal of Arid Environments 49, 823–831.
The effects of temperature and moisture on after-ripening of Cenchrus ciliaris seeds.Crossref | GoogleScholarGoogle Scholar |

Silvertown J, Charlesworth D (2009). ‘Introduction to plant population biology seed.’ (John Wiley & Sons: Hoboken, NJ, USA)

Simpson GM (1990) ‘Seed dormancy in grasses.’ (Cambridge University Press: Cambridge, UK)

Toole VK (1941) Factors affecting the germination of various dropseed grasses (Sporobolus spp.). Journal of Agricultural Research 62, 691–715.

Vogler WD, Bahnisch LM (2006) Effect of growing site, moisture stress and seed size on viability and dormancy of Sporobolus pyramidalis (giant rats tail grass) seed. Australian Journal of Experimental Agriculture 46, 1473–1479.
Effect of growing site, moisture stress and seed size on viability and dormancy of Sporobolus pyramidalis (giant rats tail grass) seed.Crossref | GoogleScholarGoogle Scholar |

Wang L, Wang HL, Yin CH, Tian CY (2013) Cold stratification, but not stratification in salinity, enhances seedling growth of wheat under salt treatment. African Journal of Biotechnology 10, 14888–14890.
Cold stratification, but not stratification in salinity, enhances seedling growth of wheat under salt treatment.Crossref | GoogleScholarGoogle Scholar |

Zuloaga FO, Nicora EG, Rúgolo De Agrasar ZE, Morrone O, Pensiero JF, Cialdella AM (1994) Catálogo de la familia Poaceae en la República Argentina. Systematic Botany 47, 1–178.