Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Ovule and megagametophyte development in selected species of Apeibeae and Grewieae (Malvaceae–Grewioideae) from South America and its systematic implications

Elsa Lattar A B D , Beatriz Gloria Galati C and María Silvia Ferrucci A B
+ Author Affiliations
- Author Affiliations

A Instituto de Botánica del Nordeste (IBONE-UNNE-CONICET), C.C. 209, W3400CBL, Corrientes, Argentina.

B Cátedra de Morfología de Plantas Vasculares, Facultad de Ciencias Agrarias (FCA-UNNE), W3400CBL, Corrientes, Argentina.

C Cátedra de Botánica General, Facultad de Agronomía, Universidad de Buenos Aires (FAUBA), C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.

D Corresponding author. Email: elsilattar@gmail.com

Australian Journal of Botany 64(5) 369-376 https://doi.org/10.1071/BT15230
Submitted: 10 October 2015  Accepted: 14 June 2016   Published: 25 July 2016

Abstract

This is the first embryological report of the Grewioideae subfamily, which is meant to contribute to the characterisation of the genera Corchorus, Luehea and Triumfetta. Ovule and female gametophyte development in C. argutus, L. divaricata and T. semitriloba was analysed. The ovules of all species are anatropous, bitegmic and of crassinucellate mixed type. The micropyle of the studied species is formed by the outer integument (exostome). The ovule of L. divaricata differs from those of the other two species because the chalazal tissue expands forming a cap, which gives rise to a wing in the seed. All species present one hypostase. The megaspore mother cell gives rise to a linear megaspore triad in C. argutus and L. divaricata, whereas in T. semitriloba, triads and diads can be observed in the same ovule. The chalazal megaspore develops a seven-celled and eight-nucleate female gametophyte corresponding to the Polygonum type. The synergids of L. divaricata have hooks and a conspicuous filiform apparatus. The antipodal cells in C. argutus are persistent, whereas in the other species, they are small and ephemeral. The embryological characters are compared with those of other taxa within the family and the megagametophyte formation in these species is discussed.

Additional keywords: callose, Corchorus, female gametophyte, hypostase, Luehea, Triumfetta.


References

Banerji I (1941) A note on the development of the female gametophyte in Abroma angusta L. and Pentapetes phoenicea L. Current Science 10, 30–35.

Bayer C, Kubitzki K (2003) Malvaceae. In ‘The families and genera of vascular plants’. (Ed. K Kubitzki) pp. 225–311. (Springer-Verlag: Berlin, Germany)

Bayer C, Fay M, De Brujin AY, Savolainen V, Morton CM, Kubitzki K (1999) Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales, a combined analysis of plastid atpB and rbcL DNA sequences. Botanical Journal of the Linnean Society 129, 267–303.

Bhandari NN (1984). The microsporangium. In ‘Embryology of angiosperms’. (Ed. BM Johri) pp. 53–121. (Springer-Verlag: Berlin)

Brunken U, Muellner AN (2012) A new tribal classification of Grewioideae (Malvaceae) based on morphological and molecular phylogenetic evidence. Systematic Botany 37, 699–711.
A new tribal classification of Grewioideae (Malvaceae) based on morphological and molecular phylogenetic evidence.Crossref | GoogleScholarGoogle Scholar |

Dahlgren RM (1975) The distribution of characters within an angiosperm system. I. Some embryological characters. Botaniska Notiser 128, 181–197.

Dahlgren R (1980) A revised system of classification of the angiosperms. Botanical Journal of the Linnean Society 80, 91–124.
A revised system of classification of the angiosperms.Crossref | GoogleScholarGoogle Scholar |

Davis GL (1966) ‘Systematic embryology of the angiosperms.’ (Wiley: New York)

Donato AM (1991) Anatomía floral de Chorisia speciosa A.St.-Hil. (Bombacaceae). Bradea 5, 455–477.

Endress PK (2011) Angiosperm, development, evolution. Annals of Botany 107, 1465–1489.
Angiosperm, development, evolution.Crossref | GoogleScholarGoogle Scholar | 21606056PubMed |

Galati BG, Rosenfeldt S (1997) The development of the megagametophyte in Ceiba insignis (Kunth) Gibbs & Semir (ex. Chorisia speciosa St.Hil.) (Bombacaceae). Phytomorphology 47, 221–226.

Galati BG, Rosenfeldt S, Tourn GM (2005) Embryological studies in Lotus glaber (Fabaceae). Annales Botanici Fennici 43, 97–106.

Gonzalez AM, Cristóbal CL (1997) Anatomía y ontogenia de semillas de Helicteres lhostzkyana (Sterculiaceae). Bomplandia 9, 287–294.

Gunning BES, Pate JS (1969) ‘Transfer cells’ plant cells with wall ingrowths, specialized in relation to short distance transport of solutes: their occurrence, structure, and development. Protoplasma 68, 107–133.
‘Transfer cells’ plant cells with wall ingrowths, specialized in relation to short distance transport of solutes: their occurrence, structure, and development.Crossref | GoogleScholarGoogle Scholar |

Johansen DA (1940) ‘Plant microtechnique.’ (Mc Graw-Hill Book Co. Inc.: New York)

Johri BM, Ambegaokar KB, Srivastava PS (1992) ‘Comparative embryology of angiosperms, vols 1 and 2.’ (Springer-Verlag: Berlin)

Luque RH, Souza C, Kraus JE (1996) Métodos de coloracão do Roeser (1972) – Modoficado – E Kropp (1972), visado a substituicão do azul de astra por azul de alcião 8GS on 8GX. Acta Botanica Brasílica 10, 199–212.

Mendes-Rodrigues C, Carmo-Oliveira R, Talavera S, Arista M, Ortiz PL, Oliveira PE (2005) Polyembryony and apomixis in Eriotheca pubescens (Malvaceae–Bombacoideae). Plant Biology 7, 533–540.
Polyembryony and apomixis in Eriotheca pubescens (Malvaceae–Bombacoideae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mvpt1Gruw%3D%3D&md5=61cfaa53df96ff5464a2f630ab3953a3CAS | 16163619PubMed |

Mogensen HL (1972) Fine structure and composition of the egg apparatus before and after fertilization in Quercus gambelii, the functional ovule. American Journal of Botany 59, 931–941.
Fine structure and composition of the egg apparatus before and after fertilization in Quercus gambelii, the functional ovule.Crossref | GoogleScholarGoogle Scholar |

O’Brien TP, McCully ME (1981) ‘The study of plant structure: principles and selected methods.’ (Termarcarphi: Melbourne)

Philipson WR (1974) Ovular morphology and the major classification of the dicotyledons. Botanical Journal of the Linnean Society 68, 89–108.
Ovular morphology and the major classification of the dicotyledons.Crossref | GoogleScholarGoogle Scholar |

Rao CV, Rao KVS (1952) A contribution to the embryology of Triumfetta rhomboidea Jacq. and Corchorus acutangulus L. Journal of the Indian Botanical Society 31, 56–68.

Reinheimer R, Kellogg EA (2009) Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new. The Plant Cell 21, 2591–2605.
Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVejtbbE&md5=7825cdd2f1e839aeb73506291e81b750CAS | 19749151PubMed |

Rodkiewicz B (1970) Callose in cell walls during megasporogenesis. Planta 93, 39–47.
Callose in cell walls during megasporogenesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cvit1eltA%3D%3D&md5=56aaf930d7573cca1313c4e35c66bb34CAS | 24496659PubMed |

Rodkiewicz B, Bednara J (1976) Cell wall ingrowth and callose distribution in megasporogenesis in some Orchidaceae. Phytomorphology 26, 276–281.

Sporne K (1969) The ovule as an indicator of evolutionary status in angiosperms. New Phytologist 68, 555–566.
The ovule as an indicator of evolutionary status in angiosperms.Crossref | GoogleScholarGoogle Scholar |

Sumner MJ, van Caeseele L (1990) The development of the central cell of Brassica campestris prior to fertilization. Canadian Journal of Botany 68, 2553–2563.
The development of the central cell of Brassica campestris prior to fertilization.Crossref | GoogleScholarGoogle Scholar |

Tang Y (1998) Floral morphology and embryo sac development in Burretiodendron kydiifolium Y.C.Hsu et R.Zhuge (Tiliaceae) and their systematic significance. Botanical Journal of the Linnean Society 128, 149–158.

Tang Y, Pan KY (1994) Gametophic development of Melhania hamiltoniana Wall. (Sterculiaceae) and its systematic implications. Cathaya 6, 67–74.

Tang Y, Gao H, Xie J (2009) An embryological study of Eriolaena candollei Wallich (Malvaceae) and its systematic implications. Flora 204, 569–580.
An embryological study of Eriolaena candollei Wallich (Malvaceae) and its systematic implications.Crossref | GoogleScholarGoogle Scholar |

Van der Pluijm JE (1964) An electron microscopic investigation of the filiform apparatus in the embryo sac of Torenia fournieri. In ‘Pollen physiology and fertilization’. (Ed. HF Linskens) pp. 8–16. (North-Holland Publishing Co.: Amsterdam)

Venkata Rao C (1953) Contributions to the embryology of Sterculiaceae V. Journal of the Indian Botanical Society 32, 208–238.

Venkata Rao C (1954) A contribution to the embryology of Bombacaceae. Proceedings of the Indian National Academy of Sciences 39, 51–75.

Venkata Rao C (1963) Studies in the Proteaceae. 3. Tribe Oriteae. Proceedings of the National Institute of Sciences of India, Calcutta 29, 489–510.