Self-compatibility and specialisation in a fly-pollinated Acianthera (Orchidaceae: Pleurothallidiinae)
E. R. Pansarin A D , L. M. Pansarin B , M. E. P. Martucci C and L. Gobbo-Neto CA Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil.
B Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, trav. 14, 05508-900, São Paulo, SP, Brazil.
C Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil.
D Corresponding author. Email: epansarin@ffclrp.usp.br
Australian Journal of Botany 64(4) 359-367 https://doi.org/10.1071/BT15177
Submitted: 6 August 2015 Accepted: 3 June 2016 Published: 24 June 2016
Abstract
Diptera is one of the most widespread order of pollinators within Angiosperms and the more important pollinator group of the orchid subtribe Pleurothallidinae. Acianthera aphthosa (Lindl.) Pridgeon & M.W.Chase was studied in a Brazilian nature reserve, covering aspects of phenology, floral morpho-anatomy, flower histochemistry, pollinators, pollination mechanisms and reproductive system. A. aphthosa possess multicellular papillae on the inner surface of the sepals, which release a fetid dung-like fragrance. The fragrance is released by apical stomata, and attracts several fly species of the families Calliphoridae, Muscidae, Sarcophagidae and Ulidiidae. However, only one species of Acrosticta (Ulidiidae) was shown to be an effective pollinator. The upper surface of the labellum possesses a secretory tissue that apparently is related to nectar production, although the secretion is retained under the cuticle. As is common in fly-pollinated orchids, the Diptera are trapped by the flower. However, contrary to what is reported for other myophilous orchids, the pollinators of A. aphthosa are not frightened after leaving the flower and commonly visit further flowers on the same plant and inflorescence. In this case, the retention of the anther cap by the pollinarium, tend to reduce the geitonogamous self-pollination. A. aphthosa is self-compatible but pollinator-dependent. To the best of our knowledge this is the first record of complete self-compatibility in Acianthera. The low amount of seeds without embryos in self-pollinated flowers, in contrast to cross-pollinations, seems to be a consequence of inbreeding depression.
Additional keywords: floral biology, myophily, reproduction, reproductive biology.
References
Barbosa AR, Melo MC, Borba EL (2009) Self-incompatibility and myophily in Octomeria (Orchidaceae, Pleurothallidinae) species. Plant Systematics and Evolution 283, 1–8.| Self-incompatibility and myophily in Octomeria (Orchidaceae, Pleurothallidinae) species.Crossref | GoogleScholarGoogle Scholar |
Bellot S, Renner SS (2013) Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms. American Journal of Botany 100, 1083–1094.
| Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms.Crossref | GoogleScholarGoogle Scholar | 23703856PubMed |
Borba EL, Semir J (1998) Wind-assisted fly pollination in three Bulbophyllum (Orchidaceae) species occurring in the Brazilian Campos rupestres. Lindleyana 13, 203–218.
Borba EL, Semir J (1999) Temporal variation in pollinarium size after its removal in species of Bulbophyllum: a different mechanism preventing self-pollination in Orchidaceae. Plant Systematics and Evolution 217, 197–204.
| Temporal variation in pollinarium size after its removal in species of Bulbophyllum: a different mechanism preventing self-pollination in Orchidaceae.Crossref | GoogleScholarGoogle Scholar |
Borba EL, Semir J (2001) Pollinator specificity and convergence in fly-pollinated Pleurothallis (Orchidaceae) species: a multiple population approach. Annals of Botany 88, 75–88.
| Pollinator specificity and convergence in fly-pollinated Pleurothallis (Orchidaceae) species: a multiple population approach.Crossref | GoogleScholarGoogle Scholar |
Borba EL, Semir J, Shepherd GJ (2001) Self-incompatibility, inbreeding depression and crossing potential in five Brazilian Pleurothallis (Orchidaceae) species. Annals of Botany 88, 89–99.
| Self-incompatibility, inbreeding depression and crossing potential in five Brazilian Pleurothallis (Orchidaceae) species.Crossref | GoogleScholarGoogle Scholar |
Borba EL, Barbosa AR, Melo MC, Gontijo SL, Oliveira HO (2011) Mating systems in the Pleurothallidinae (Orchidaceae): evolutionary and systematic implications. Lankesteriana 11, 207–221.
Christensen DE (1994) Fly pollination in the Orchidaceae. In ‘Orchid biology: reviews and perspectives VI’. (Ed. J Arditti) pp. 415–454. (John Wiley & Sons: New York)
Dafni A (1992) ‘Pollination ecology: a practical approach.’(Oxford University Press: Oxford)
Dafni A, Calder DM (1987) Pollination by deceit and floral mimesis in Thelymitra antennifera (Orchidaceae). Plant Systematics and Evolution 158, 11–22.
| Pollination by deceit and floral mimesis in Thelymitra antennifera (Orchidaceae).Crossref | GoogleScholarGoogle Scholar |
de Barros F, Vinhos F, Rodrigues VT, Barberena FFVA, Fraga CN, Pessoa EM, Forster W, Menini-Neto L, Furtado SG, Nardy C, Azevedo CO, Guimarães LRS (2014) Orchidaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Available at http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB10992 [Verified 15 July 2015].
Dressler RL (1968) Pollination by euglossine bees. Evolution 22, 202–210.
| Pollination by euglossine bees.Crossref | GoogleScholarGoogle Scholar |
Dressler RL (1981) ‘The orchids: natural history and classification.’ (Harvard University Press: Cambridge)
Duque-Buitrago CA, Alzate-Quintero NF, Otero JT (2014) Nocturnal pollination by fungus gnats of the Colombian endemic species, Pleurothallis marthae (Orchidaceae: Pleurothallidinae). Lankesteriana 13, 407–417.
| Nocturnal pollination by fungus gnats of the Colombian endemic species, Pleurothallis marthae (Orchidaceae: Pleurothallidinae).Crossref | GoogleScholarGoogle Scholar |
Faegri K, van der Pijl L (1979) ‘The principles of pollination ecology.’ (Pergamon Press: Oxford)
Fuhro D, de Araújo AM, Irgang BE (2010) Are there evidences of a complex mimicry system among Asclepias curassavica (Apocynaceae), Epidendrum fulgens (Orchidaceae), and Lantana camara (Verbenaceae) in Southern Brazil? Revista Brasileira de Botanica. Brazilian Journal of Botany 33, 589–598.
Gerlach D (1969) ‘Botanische Mikrotechnik: eine Einführung.’ (Georg Thieme: Stuttgart, Germany)
Goss GJ (1977) The reproductive biology of epiphytic orchids of Florida V – Epidendrum difforme Jacq. American Orchid Society Bulletin 46, 630–636.
Humeau L, Micheneau C, Jacquemyn H, Gauvin-Bialecki A, Fournel J, Pailler T (2011) Sapromyiophily in the native orchid, Bulbophyllum variegatum, on Runión (Mascarene Archipelago, Indian Ocean). Journal of Tropical Ecology 27, 591–599.
| Sapromyiophily in the native orchid, Bulbophyllum variegatum, on Runión (Mascarene Archipelago, Indian Ocean).Crossref | GoogleScholarGoogle Scholar |
Johansen DA (1940) ‘Plant microtechnique.’ (McGraw-Hill Book Co.: New York)
Johnson SD, Nilsson LA (1999) Pollen carryover, geitonogamy and evolution of deception in orchids. Ecology 80, 2607–2619.
| Pollen carryover, geitonogamy and evolution of deception in orchids.Crossref | GoogleScholarGoogle Scholar |
Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends in Ecology & Evolution 15, 140–143.
| Generalization versus specialization in plant pollination systems.Crossref | GoogleScholarGoogle Scholar |
Köppen W (1948) ‘Climatologia: con un estudio de los climas de la tierra.’ (Fondo de Cultura Económica: México)
Kropf M, Renner SS (2008) Pollinator-mediated selfing in two deceptive orchids and a review of pollinium tracking studies addressing geitonogamy. Oecologia 155, 497–508.
| Pollinator-mediated selfing in two deceptive orchids and a review of pollinium tracking studies addressing geitonogamy.Crossref | GoogleScholarGoogle Scholar | 18060434PubMed |
Larson BMH, Kevan PG, Inouye DW (2001) Flies and flowers: I. The taxonomic diversity of anthophiles and pollinators. Canadian Entomologist 133, 439–465.
| Flies and flowers: I. The taxonomic diversity of anthophiles and pollinators.Crossref | GoogleScholarGoogle Scholar |
Leitão-Filho HF (1992) A flora arbórea da Serra do Japi. In ‘História natural da Serra do Japi.’ (Ed. LPC Morellato) pp. 40–62. (Editora da Unicamp/Fapesp: Campinas, Brazil)
Lillie RD (1965) ‘Histopathologic technic and practical histochemistry.’ (3rd edn) (McGraw-Hill Book Co.: New York)
Melo MC, Borba EL, Paiva EAS (2010) Morphological and histological characterization of the osmophores and nectaries of four species of Acianthera (Orchidaceae: Pleurothallidinae). Plant Systematics and Evolution 286, 141–151.
| Morphological and histological characterization of the osmophores and nectaries of four species of Acianthera (Orchidaceae: Pleurothallidinae).Crossref | GoogleScholarGoogle Scholar |
Melo MC, Taucce PPG, Borba EL (2011) Reproductive biology and isolation mechanisms in rupicolous species of the Acianthera prolifera complex (Orchidaceae) occurring in southeastern Brazil. Plant Systematics and Evolution 293, 161–176.
| Reproductive biology and isolation mechanisms in rupicolous species of the Acianthera prolifera complex (Orchidaceae) occurring in southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |
Mickeliunas L, Pansarin ER, Sazima M (2006) Biologia floral, melitofilia e influência de besouros Curculionidae no sucesso reprodutivo de Grobya amherstiae Lindl. (Orchidaceae: Cyrtopodiinae). Revista Brasileira de Botanica. Brazilian Journal of Botany 29, 251–258.
| Biologia floral, melitofilia e influência de besouros Curculionidae no sucesso reprodutivo de Grobya amherstiae Lindl. (Orchidaceae: Cyrtopodiinae).Crossref | GoogleScholarGoogle Scholar |
O’Brien TP, McCully ME (1981) ‘The study of plant structure: principles and selected methods.’ (Termarcarphi: Melbourne, Vic.)
Pansarin ER (2003) Biologia reprodutiva e polinização em Epidendrum paniculatum Ruiz & Pavón (Orchidaceae). Revista Brasileira de Botanica. Brazilian Journal of Botany 26, 203–211.
| Biologia reprodutiva e polinização em Epidendrum paniculatum Ruiz & Pavón (Orchidaceae).Crossref | GoogleScholarGoogle Scholar |
Pansarin ER (2008) Reproductive biology and pollination of Govenia utriculata: a syrphid fly orchid pollinated through a pollen deceptive mechanism. Plant Species Biology 23, 90–96.
| Reproductive biology and pollination of Govenia utriculata: a syrphid fly orchid pollinated through a pollen deceptive mechanism.Crossref | GoogleScholarGoogle Scholar |
Pansarin ER, Amaral MCE (2008) Reproductive biology and pollination mechanisms of Epidendrum secundum (Orchidaceae). Floral variation: a consequence of natural hybridization? Plant Biology 10, 211–219.
| Reproductive biology and pollination mechanisms of Epidendrum secundum (Orchidaceae). Floral variation: a consequence of natural hybridization?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c7ksFKktQ%3D%3D&md5=95916602f2a95e1d1e5744c615bc11eaCAS | 18304195PubMed |
Pansarin ER, Amaral MCE (2009) Reproductive biology and pollination of southeastern Brazilian Stanhopea Frost ex. Hook. (Orchidaceae). Flora 204, 238–249.
| Reproductive biology and pollination of southeastern Brazilian Stanhopea Frost ex. Hook. (Orchidaceae).Crossref | GoogleScholarGoogle Scholar |
Pansarin ER, Pansarin LM (2014) Reproductive biology of Epidendrum tridactylum (Orchidaceae: Epidendroideae): a reward-producing species and its deceptive flowers. Plant Systematics and Evolution 300, 321–328.
| Reproductive biology of Epidendrum tridactylum (Orchidaceae: Epidendroideae): a reward-producing species and its deceptive flowers.Crossref | GoogleScholarGoogle Scholar |
Pansarin ER, Bittrich V, Amaral MCE (2006) At daybreak – reproductive biology and isolating mechanisms of Cirrhaea dependens (Orchidaceae). Plant Biology 8, 494–502.
| At daybreak – reproductive biology and isolating mechanisms of Cirrhaea dependens (Orchidaceae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28votFOltg%3D%3D&md5=2815659402997bf80b24754778562e14CAS | 16906486PubMed |
Pansarin LM, Pansarin ER, Sazima M (2008) Reproductive biology of Cyrtopodium polyphyllum (Orchidaceae): a Cyrtopodiinae pollinated by deceit. Plant Biology 10, 650–659.
| Reproductive biology of Cyrtopodium polyphyllum (Orchidaceae): a Cyrtopodiinae pollinated by deceit.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crntlaitA%3D%3D&md5=0b4ab7d08bdc20415fa0677e112d01b4CAS | 18761503PubMed |
Pansarin LM, Castro MM, Sazima M (2009) Osmophore and elaiophores of Grobya amherstiae (Catasetinae, Orchidaceae) and their relation to pollination. Botanical Journal of the Linnean Society 159, 408–415.
| Osmophore and elaiophores of Grobya amherstiae (Catasetinae, Orchidaceae) and their relation to pollination.Crossref | GoogleScholarGoogle Scholar |
Pearse AGE (1985) ‘Histochemistry: theoretical and applied. Vol. 2.’ (4th edn) (Churchill Livingstone: Edinburgh, UK)
Pinheiro F, Cozzolino S (2013) Epidendrum (Orchidaceae) as a model system for ecological and evolutionary studies in the neotropics. Taxon 62, 77–88.
Purvis MJ, Collier DC, Walls D (1964) ‘Laboratory techniques in botany.’ (Butterwoths: London)
Ribeiro MF, Köhler A, Boelter CR (2006) Polinização de Acianthera aphtosa (Lindl.) Pridgeon & M.W.Chase (Orchidaceae) por Otitidae (Diptera). Uruguaiana 13, 85–89.
Sakai WS (1973) Simple method for differential staining of paraffin embedded plant material using Toluidine blue O. Stain Technology 48, 247–249.
| Simple method for differential staining of paraffin embedded plant material using Toluidine blue O.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXlt1ehu70%3D&md5=67b2ef1f73c73d09305ddcead8f955b6CAS | 4126691PubMed |
Singer RB, Cocucci AA (1999) Pollination mechanism in southern Brazilian orchids which are exclusively or mainly pollinated by halictid bees. Plant Systematics and Evolution 217, 101–117.
| Pollination mechanism in southern Brazilian orchids which are exclusively or mainly pollinated by halictid bees.Crossref | GoogleScholarGoogle Scholar |
Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms I: pollination mechanisms. Annual Review of Ecology and Systematics 1, 307–326.
Stern WL, Curry KJ, Pridgeon AM (1987) Osmophores of Stanhopea (Orchidaceae). American Journal of Botany 74, 1323–1331.
| Osmophores of Stanhopea (Orchidaceae).Crossref | GoogleScholarGoogle Scholar |
Stpiczyńska M (1997) The structure of nectary of Platanthera bifolia L. Orchidaceae. Acta Societatis Botanicorum Poloniae 66, 5–11.
| The structure of nectary of Platanthera bifolia L. Orchidaceae.Crossref | GoogleScholarGoogle Scholar |
Teck OP, Hong TK (2011) Fly pollination in four Malaysian species of Bulbophyllum (section Sestochilus) - B. lasianthum, B. lobbii, B. subumbellatum and B. virescens. Malesian Orchid Journal 8, 103–110.
Teixeira SP, Borba EL, Semir J (2004) Lip anatomy and its implications for the pollination mechanisms of Bulbophyllum species. Annals of Botany 93, 499–505.
| Lip anatomy and its implications for the pollination mechanisms of Bulbophyllum species.Crossref | GoogleScholarGoogle Scholar |
Tremblay RL (1992) Trends in pollination ecology of the Orchidaceae: evolution and systematics. Canadian Journal of Botany 70, 642–650.
| Trends in pollination ecology of the Orchidaceae: evolution and systematics.Crossref | GoogleScholarGoogle Scholar |
van der Niet T, Hansen DM, Johnson SD (2011) Carrion mimicry in a South African orchid: flowers attract a narrow subset of the fly assemblage on animal carcasses. Annals of Botany 107, 981–992.
| Carrion mimicry in a South African orchid: flowers attract a narrow subset of the fly assemblage on animal carcasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlemsrY%3D&md5=f509b864f598ce7b3ef19164af1f4da8CAS | 21402538PubMed |
van der Pijl L, Dodson CH (1966) ‘Orchid flowers: their pollination and evolution.’ (University of Miami Press: Coral Gables, FL, USA)
Vogel S (1990) ‘The role of scent glands in pollination.’ (Smithsonian Institute: Washington, DC, USA)
Waser NM, Ollerton J (2006) ‘Plant–pollinator interactions: from specialization to generalization.’ (University of Chicago Press: Chicago, IL, USA)
Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77, 1043–1060.
| Generalization in pollination systems, and why it matters.Crossref | GoogleScholarGoogle Scholar |
Wetschnig W, Depisch B (1999) Pollination biology of Welwitschia mirabilis Hook.f. (Welwitschiaceae, Gnetopsida). Phyton-Annales Rei Botanicae 39, 167–183.
Whitten WM, Williams NH (1992) Floral fragrances of Stanhopea (Orchidaceae). Lindleyana 7, 130–153.
Williams NH, Whitten WM (1983) Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biological Bulletin 164, 355–395.
| Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkvVGnu7Y%3D&md5=d277c5677a75778b63a0840116632d26CAS |