Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Phytotoxic effects of phenolic compounds on Calopogonium mucunoides (Fabaceae) roots

Roberta Cristiane Ribeiro A , Rodrigo Barbosa Braga Feitoza B , Helena Regina Pinto Lima C E and Mário Geraldo de Carvalho D
+ Author Affiliations
- Author Affiliations

A Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso – IFMT, Campus Sorriso, 78890-000, Sorriso, MT, Brazil.

B Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602, Campos dos Goytacazes, RJ, Brazil.

C Departamento de Botânica, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, 23897-000, Seropédica, RJ, Brazil.

D Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, 23897-000, Seropédica, RJ, Brazil.

E Corresponding author. Email: helena.pinto@uca.es

Australian Journal of Botany 63(8) 679-686 https://doi.org/10.1071/BT15097
Submitted: 11 December 2014  Accepted: 13 September 2015   Published: 30 November 2015

Abstract

Studies on phenols have gained attention owing to their abundance in plants and their effects on plant development. Phenols from forage grasses may exert phytotoxicity on legume crops in intercropping systems. We aimed to identify morpho-anatomical variations in Calopogonium mucunoides Desv. roots treated with phenolic compounds. Seeds of C. mucunoides were treated with (1) distilled water (control), (2) trans-cinnamic acid, (3) a mixture of the flavonoids quercetin, rutin, kaempferol and kaempferol-3-α-rhamnoside, or (4) a combination of the flavonoid mixture and trans-cinnamic acid. After 10 days of treatment, the roots were measured, described and processed according to standard techniques in plant anatomy. In general, non-control individuals showed plant lengths decreased by 40–45%, root-tip necrosis and intense lateral root ramification. Seeds germinated in cinnamic acid presented xylem poles with a greater number of cells and a greater emission of lateral roots. In the seeds treated with flavonoids, cell division was observed in the endodermis and the pericycle, and xylem fibres went through differentiation. The combination of cinnamic acid and flavonoids led to the premature formation of fibres by the phloem. The treatments with flavonoids or cinnamic acid alone were significantly greater in root diameter (868.61 µm and 810.35 µm, respectively) than was the application of both (714.98 µm) or the control (533.76 µm). The results suggest that cinnamic acid and the tested flavonoids negatively affect the development and the root structure of C. mucunoides.


References

Aloni R, Tollier MT, Montie B (1990) The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus blumei stems. Plant Physiology 94, 1743–1747.
The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus blumei stems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvV2kuw%3D%3D&md5=f786db9f966ded3d68b9d9db6d0a2a83CAS | 16667911PubMed |

Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Annals of Botany 97, 883–893.
Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFahtLY%3D&md5=5c56a116c2d9c61a51822f1734dc741bCAS | 16473866PubMed |

Alves SM, Santos LS (2002) Natureza química dos agentes alelopáticos. In ‘Alelopatia: princípios básicos e aspectos gerais’. (Eds APS Souza Filho, SM Alves) pp. 25–48. (Embrapa Amazônia Oriental: Belém, Brazil)

Baziramakenga R, Leroux GD, Simard RR (1995) Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology 21, 1271–1285.
Effects of benzoic and cinnamic acids on membrane permeability of soybean roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosVGms7Y%3D&md5=a6fa7f2849f9f965d3fa9e20c5c942e3CAS | 24234626PubMed |

Baziramakenga R, Leroux GD, Simard RR, Nadeau P (1997) Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings. Canadian Journal of Botany 75, 445–450.
Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlyrurk%3D&md5=272e3f6de411839397bf0f598915077aCAS |

Blum U, Geric GM (2005) Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies. Journal of Chemical Ecology 31, 1907–1932.
Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1emsro%3D&md5=6f3ed11cd1da95ae9094286b144b3df5CAS | 16222815PubMed |

Borella J, Pastorini LH (2009) Allelopathic influence of Phytolacca dioica L. germination and early growth of Lycopersicum esculentum and Bidens pilosa. Biotemas 22, 67–75.
Allelopathic influence of Phytolacca dioica L. germination and early growth of Lycopersicum esculentum and Bidens pilosa.Crossref | GoogleScholarGoogle Scholar |

Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56, 317–333.
Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2Fls1WktQ%3D%3D&md5=804b28bc5e0fedea1e3c394d638d8684CAS | 9838798PubMed |

Bukatsch F (1972) Bemerkungen zur Doppelfärbung Astrablau–Safranin. Mikrokosmos 61, 33–36.

Camargos LS, Sodek L (2010) Nodule growth and nitrogen fixation of Calopogonium mucunoides L. show low sensitivity to nitrate. Symbiosis 51, 167–174.
Nodule growth and nitrogen fixation of Calopogonium mucunoides L. show low sensitivity to nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KrsbrJ&md5=66d017dcff00f068c2cdc7f31539da42CAS |

Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry 72, 1–20.
Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslGit7Y%3D&md5=71cedceb9abfcd13755102e4d24a4368CAS | 23774057PubMed |

Chon SU, Choi SK, Jung S, Jang HG, Pyo BS, Kim SM (2002) Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Protection 21, 1077–1082.
Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFegsrk%3D&md5=ff0bace9faad13f90515de9907cc0378CAS |

Cruz-Ortega R, Anaya AL, Hernández-Bautista BE, Laguna-Hernández G (1998) Effects of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia. Journal of Chemical Ecology 24, 2039–2057.
Effects of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis12k&md5=17603ae078396d6f87a71e1ff4eeeadeCAS |

Dayan FE, Romagni JG, Duke SO (2000) Investigating the mode of action of natural phytotoxins. Journal of Chemical Ecology 26, 2079–2094.
Investigating the mode of action of natural phytotoxins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFaitr8%3D&md5=4e20f666161b8f0d48f37b5a14ee9a97CAS |

Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine arabidopsis root-meristem size by controlling cell differentiation. Current Biology 17, 678–682.
Cytokinins determine arabidopsis root-meristem size by controlling cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1ahsLk%3D&md5=e2cb2eb51dfb887a57c7f720c73092c9CAS | 17363254PubMed |

Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322, 1380–1384.
A genetic framework for the control of cell division and differentiation in the root meristem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVagt7vE&md5=9469c5d23996350be08c5ba8ffbbbc95CAS | 19039136PubMed |

Ding J, Sun Y, Xiao CL, Shi K, Zhou YH, Yu JQ (2007) Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. Journal of Experimental Botany 58, 3765–3773.
Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWhurjM&md5=35cc4ca0ee79a9f56405cab8c7826830CAS | 17965143PubMed |

Döbereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biology & Biochemistry 29, 771–774.
Biological nitrogen fixation in the tropics: social and economic contributions.Crossref | GoogleScholarGoogle Scholar |

Einhellig FA (2004) Mode of allelochemical action of phenolic compounds. In ‘Allelopathy: chemistry and mode of action of allelochemicals’. (Eds FA Macías, JCG Galindo, JMG Molinillo, HG Cutler) pp. 217–238 (CRC Press: Boca Ratón, USA).

Ferreira AG, Aquila MEA (2000) Allelopathy: an emerging topic in ecophysiology. Revista Brasileira de Fisiologia Vegetal 12, 175–204.

Formagio ASN, Masetto TE, Baldivia DS, Vieira MC, Zárate NAH, Pereira ZV (2010) Allelopathic potential of five species of the Annonaceae family. Brazilian Journal of Biosciences 8, 349–354.

Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68, 2831–2846.
From waste products to ecochemicals: fifty years research of plant secondary metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlykurbK&md5=4992395a096e8656326fc1d9525169b2CAS | 17980895PubMed |

Hewelt A, Prinsen E, Schell J, Van Onckelen H, Schmulling T (1994) Promoter tagging with a promoterless IPT gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants: implications of gene dosage effects. The Plant Journal 6, 879–891.
Promoter tagging with a promoterless IPT gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants: implications of gene dosage effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFyqurc%3D&md5=260e2fbc11746333ad481791522a1c51CAS | 7849758PubMed |

Hussain MI, Reigosa MJ (2011) Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy in three C3 perennial species. Journal of Experimental Botany 62, 4533–4545.
Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy in three C3 perennial species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKisbvO&md5=bb072a75e6f74c484ac36b3854da4e54CAS | 21659663PubMed |

IAS (International Allelopathy Society) (1996) ‘Constitution and bylaw of IAS.’ (IAS Newsletter: Cádiz, Spain)

Johansen DA (1940) ‘Plant microtechnique.’ (MacGraw-Hill Book Company: New York)

Karia CT, Duarte JB, Araújo ACG (2006) ‘Desenvolvimento de cultivares do gênero Brachiaria (Trin.) Griseb. no Brasil.’ (Embrapa Cerrados: Planaltina, Brazil)

Katekar GF, Geissler AE (1980) Auxin transport inhibitors. IV. Evidence of a common mode of action for a proposed class of auxin transport inhibitors, the phytotropins. Plant Physiology 66, 1190–1195.
Auxin transport inhibitors. IV. Evidence of a common mode of action for a proposed class of auxin transport inhibitors, the phytotropins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXnvVejug%3D%3D&md5=4af495a808b150ff2e7d6711f1c5534aCAS | 16661601PubMed |

Leather GR, Einhellig FA (1988) Bioassay of naturally occurring allelochemicals for toxicity. Journal of Chemical Ecology 14, 1821–1828.
Bioassay of naturally occurring allelochemicals for toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXjsFaitQ%3D%3D&md5=c929c8c5420c73f214a575f516b7b218CAS | 24277096PubMed |

Lima HRP, Kaplan MAC (2010) Quimiossistemática micromolecuar e tendências evolutivas da superordem Zingiberiflorae (sensu Dahlgren). In ‘Abordagem quimiossistemática e evolução química de fanerógamas’. (Eds MAC Kaplan, HS Abreu, HRP Lima, GLG Soares) pp. 231–259. (EDUR-UFRRJ: Rio de Janeiro)

Lv Q, Cheng R, Shi T (2014) Regulatory network rewiring for secondary metabolism in Arabidopsis thaliana under various conditions. BMC Plant Biology 14, 180
Regulatory network rewiring for secondary metabolism in Arabidopsis thaliana under various conditions.Crossref | GoogleScholarGoogle Scholar | 24993737PubMed |

Macías FA, Galindo JLG, Galindo JCG (2007) Evolution and current status of ecological phytochemistry. Phytochemistry 68, 2917–2936.
Evolution and current status of ecological phytochemistry.Crossref | GoogleScholarGoogle Scholar | 18023828PubMed |

Mathesius U (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. Journal of Experimental Botany 52, 419–426.
Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1ajsr4%3D&md5=58cb8fc9af560cba272d95577ff397d0CAS | 11326048PubMed |

Meiners SJ, Kong CH, Ladwig LM, Pisula NL, Lang KA (2012) Developing an ecological context for allelopathy. Plant Ecology 213, 1861–1867.
Developing an ecological context for allelopathy.Crossref | GoogleScholarGoogle Scholar |

Moonen AC, Bàrberi P (2006) An ecological approach to study the physical and chemical effects of rye cover crop residues on Amaranthus retrofexus, Echinochloa crus-galli and maize. Annals of Applied Biology 148, 73–89.
An ecological approach to study the physical and chemical effects of rye cover crop residues on Amaranthus retrofexus, Echinochloa crus-galli and maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslWis7c%3D&md5=5a082ba70218f1a17ce0c346977641a8CAS |

Muscolo A, Panuccio MR, Sidari M (2001) The effect of phenols on respiratory enzymes in seed germination - Respiratory enzyme activities during germination of Pinus laricio seeds treated with phenols extractes from different forest soils. Plant Growth Regulation 35, 31–35.
The effect of phenols on respiratory enzymes in seed germination - Respiratory enzyme activities during germination of Pinus laricio seeds treated with phenols extractes from different forest soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVOlsg%3D%3D&md5=18eb922d5e1731cf1ec7dfd16f0c5b33CAS |

Perin A, Santos RHS, Urquiaga G, Guerra JGM, Cecon PR (2004) Phytomass yield, nutrientes accumulation and biological nitrogen fixation by single and associated green manures. Pesquisa Agropecuaria Brasileira 39, 35–40.

Peron AJ, Evangelista AR (2004) Pasture degradation in savanna’s regions. Ciência e Agrotecnologia 28, 655–661.
Pasture degradation in savanna’s regions.Crossref | GoogleScholarGoogle Scholar |

Pineau C, Freydier A, Ranocha P, Jauneau A, Turner S, Lemonnier G, Renou JP, Tarkowski P, Sandberg G, Jouanin L, Sundberg B, Boudet AM, Goffner D, Pichon M (2005) hca: an Arabidopsis mutant exhibiting unusual cambial activity and altered vascular patterning. The Plant Journal 44, 271–289.
hca: an Arabidopsis mutant exhibiting unusual cambial activity and altered vascular patterning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyhsb7F&md5=3de520865fd45b616e91799e6b12f7c1CAS | 16212606PubMed |

Politycka B (1996) Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids. Acta Physiologiae Plantarum 18, 365–370.

Putnam AR, Duke WB (1978) Allelopathy in agroecosystems. Annual Review of Phytopathology 16, 431–451.
Allelopathy in agroecosystems.Crossref | GoogleScholarGoogle Scholar |

Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International 50, 586–621.
Plant polyphenols: chemical properties, biological activities, and synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFGjsw%3D%3D&md5=2ca929aecb5f19e3d69ed8bbcc34d29bCAS |

Reigosa MJ, Souto XC, González L (1999) Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regulation 28, 83–88.
Effect of phenolic compounds on the germination of six weeds species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1egs70%3D&md5=d81750172040d8f8f362f63a742c41a5CAS |

Reigosa R, Gomes AS, Ferreira AG, Borghetti F (2013) Allelopathic research in Brazil. Acta Botanica Brasílica 27, 629–646.
Allelopathic research in Brazil.Crossref | GoogleScholarGoogle Scholar |

Ribeiro RC, Carvalho MG, Lopes HM, Rossiello ROP, Barbieri É (2012) Allelopathic activity of the hydrolate and water decoction of Brachiaria humidicola (Rendle) plant parts on the germination of four tropical leguminous species. ISRN Agronomy
Allelopathic activity of the hydrolate and water decoction of Brachiaria humidicola (Rendle) plant parts on the germination of four tropical leguminous species.Crossref | GoogleScholarGoogle Scholar |

Rice EL (1984) ‘Allelopathy.’ 2nd edn. (Academic Press: Orlando)

Rodrigues APDC, Laura VA, Pereira SR, Deiss C (2012) Allelopathy of two brachiaria species in seeds of three species of stylosanthes. Ciência Rural 42, 1758–1763.
Allelopathy of two brachiaria species in seeds of three species of stylosanthes.Crossref | GoogleScholarGoogle Scholar |

Santos LS, Santos JCL, Souza Filho APS, Corrêa MJC, Veiga TAM, Freitas VCM, Ferreira ICS, Gonçalves NS, Silva CE, Guilhon GMSP (2008) Atividade alelopática de substâncias químicas isoladas do capim-marandu e suas variações em função do pH. Planta Daninha 26, 531–538.
Atividade alelopática de substâncias químicas isoladas do capim-marandu e suas variações em função do pH.Crossref | GoogleScholarGoogle Scholar |

Santos MDR, Vitor AP, Carneiro JC, Paciullo DSC, Matos RC, Matos MAC (2011) Use of ultrasound bath in the extraction and quantification of ester-linked phenolic acids in tropical forages. American Journal of Analytical Chemistry 2, 344–351.
Use of ultrasound bath in the extraction and quantification of ester-linked phenolic acids in tropical forages.Crossref | GoogleScholarGoogle Scholar |

Seiffert NF, Zimmer AH, Schunke RM, Behling-Miranda CH (1985) Nitrogen recycling in mixed pastures of Calopogonium mucunoides and Brachiaria decumbens. Pesquisa Agropecuaria Brasileira 20, 529–544.

Senarathne SHS, Dissanayaka DNM, Vidhana Arachchi LP (2010) Allelopathic potential of Brachiaria brizantha and B. milliformis on seed germination of selected bioassay species. Pakistan Journal of Weed Science Research 16, 207–216.

Souza Filho APS, Alves SM (2002) Mecanismos de ação dos agentes alelopáticos. In ‘Alelopatia: princípios básicos e aspectos gerais’. (Eds APS Souza Filho, SM Alves) pp. 25–48. (Embrapa Amazônia Oriental: Belém, Brazil)

Souza Filho APS, Pereira AAG, Bayma JC (2005) Allelochemical produced by the forage grass Brachiaria humidicola. Planta Daninha 23, 25–32.
Allelochemical produced by the forage grass Brachiaria humidicola.Crossref | GoogleScholarGoogle Scholar |

Stafford HA (1991) Flavonoid evolution: an enzymic approach. Plant Physiology 96, 680–685.
Flavonoid evolution: an enzymic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltFSmsbc%3D&md5=017e382bee5de15133843bfa4e1aa515CAS | 16668242PubMed |

Taiz L, Zeiger E (2010) ‘Plant physiology.’ (Sinauer Associates Inc.: Sunderland, MA)

Takahashi L, Sert MA, Kelmer-Bracht AM, Bracht A, Ishii-Iwamoto EL (1998) Effects of rutin and quercetin on mitochondrial metabolism and on ATP levels in germinating tissues of Glycine max. Plant Physiology and Biochemistry 36, 495–501.
Effects of rutin and quercetin on mitochondrial metabolism and on ATP levels in germinating tissues of Glycine max.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOlu78%3D&md5=a1c6741d7703f97fd87d1817a2a9288bCAS |

Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proceedings of the National Academy of Sciences, USA 98, 10487–10492.
Regulation of plant growth by cytokinin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFWhs7g%3D&md5=42febb0afe42f71a4e44166094a9869fCAS |

Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulations of shoot and root meristem activity. The Plant Cell 15, 2532–2550.
Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulations of shoot and root meristem activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Ortbw%3D&md5=16f7195b42cf77a00da497c7d64ade07CAS | 14555694PubMed |

Yamamoto Y (2009) Movement of allelopathic compound coumarin from plant residue of sweet vernalgrass (Anthoxanthum odoratum L.) to soil. Grassland Sciences 55, 36–40.
Movement of allelopathic compound coumarin from plant residue of sweet vernalgrass (Anthoxanthum odoratum L.) to soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmslyksro%3D&md5=accea317914e51daa110b6f04813c1f7CAS |

Ye SF, Zhou YH, Sun Y, Zou LY, Yu JQ (2006) Cinnamic acid causes oxidative stress in cucumber roots and promotes incidence of Fusarium wilt. Environmental and Experimental Botany 56, 255–262.
Cinnamic acid causes oxidative stress in cucumber roots and promotes incidence of Fusarium wilt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVyisLg%3D&md5=7f2426c4496ac339f5c4f2e68bf8934aCAS |

Zhang D, Zhang J, Yang W, Wu F (2010) Potential allelopathic effect of Eucalyptus grandis across a range of plantation ages. Ecological Research 25, 13–23.
Potential allelopathic effect of Eucalyptus grandis across a range of plantation ages.Crossref | GoogleScholarGoogle Scholar |