Wind and insect pollination (ambophily) of Mallotus spp. (Euphorbiaceae) in tropical and temperate forests
Eri Yamasaki A C and Shoko Sakai BA Center for Ecological Research, Kyoto University, Hirano, Otsu, Shiga 520-2113, Japan.
B Research Institute for Humanity and Nature, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8047, Japan.
C Corresponding author. Email: eri@ecology.kyoto-u.ac.jp
Australian Journal of Botany 61(1) 60-66 https://doi.org/10.1071/BT12202
Submitted: 25 July 2012 Accepted: 28 November 2012 Published: 24 January 2013
Abstract
Relatively few flowering plants show ambophily (pollination by both wind and insects), and whether and when ambophily is advantageous has not been studied well. In the present study, we report ambophily in two dioecious pioneer tree species, Mallotus japonicus Müll.Arg. in a temperate forest of Japan, and Mallotus wrayi King ex Hook.f. in a tropical forest of Borneo, and discuss the conditions that contribute to the maintenance of ambophily. Both species are pollinated by wind because they set fruits even when flower visitors were excluded and because substantial amounts of airborne pollen reached female trees. Insects may also contribute to fruit set, because insects with body pollen visited female inflorescences. Because M. japonicus and M. wrayi exhibit floral characteristics that are adapted to both wind and insect pollination, ambophily may be actively maintained in the two species at the study sites and perhaps elsewhere. Whereas previous studies have indicated that ambophily is advantageous for pioneer plants because of changing wind conditions during forest succession, our preliminary data suggest that changes in population density also contribute to the maintenance of ambophily in M. japonicus.
References
Albrecht M, Duell P, Obrist MK, Kleijn D, Schmid B (2009) Effective long-distance pollen dispersal in Centaurea jacea. PLoS ONE 4, e6751| Effective long-distance pollen dispersal in Centaurea jacea.Crossref | GoogleScholarGoogle Scholar |
Corlett RT (2004) Flower visitors and pollination in the Oriental (Indomalayan) Region. Biological Reviews of the Cambridge Philosophical Society 79, 497–532.
| Flower visitors and pollination in the Oriental (Indomalayan) Region.Crossref | GoogleScholarGoogle Scholar |
Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends in Ecology & Evolution 17, 361–369.
| The evolution of wind pollination in angiosperms.Crossref | GoogleScholarGoogle Scholar |
Davies SJ, Ashton PS (1999) Phenology and fecundity in 11 sympatic pioneer species of Macaranga (Euphorbiaceae) in Borneo. American Journal of Botany 86, 1786–1795.
| Phenology and fecundity in 11 sympatic pioneer species of Macaranga (Euphorbiaceae) in Borneo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mngs1Grtw%3D%3D&md5=a8fd65d8ea5ecfa7f4e8771c5b345780CAS |
de Jong TJ, Batenburg JC, Klinkhamer PGL (2005) Distance-dependent pollen limitation of seed set in some insect-pollinated dioecious plants. Acta Oecologica 28, 331–335.
| Distance-dependent pollen limitation of seed set in some insect-pollinated dioecious plants.Crossref | GoogleScholarGoogle Scholar |
Faegri K, van der Pijl L (1979) ‘The principles of pollination ecology.’ (Pergamon Press: Oxford, UK)
Fiala B, Meyer U, Hashim R, Maschwitz U (2011) Pollination systems in pioneer trees of the genus Macaranga (Euphorbiaceae) in Malaysian rainforests. Biological Journal of the Linnean Society 103, 935–953.
| Pollination systems in pioneer trees of the genus Macaranga (Euphorbiaceae) in Malaysian rainforests.Crossref | GoogleScholarGoogle Scholar |
Gómez JM, Zamora R (1996) Wind pollination in high-mountain populations of Hormathophylla spinosa (Cruciferae). American Journal of Botany 83, 580–585.
| Wind pollination in high-mountain populations of Hormathophylla spinosa (Cruciferae).Crossref | GoogleScholarGoogle Scholar |
Goodwillie C (1999) Wind pollination and reproductive assurance in Linanthus parviflorus (Polemoniaceae), a self-incompatible annual. American Journal of Botany 86, 948–954.
| Wind pollination and reproductive assurance in Linanthus parviflorus (Polemoniaceae), a self-incompatible annual.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnhtVKmsA%3D%3D&md5=485f15a39764f749c88272e6b26c0eceCAS |
Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148, 185–206.
| Neotropical secondary forest succession: changes in structural and functional characteristics.Crossref | GoogleScholarGoogle Scholar |
Hesse E, Pannell JR (2011) Density-dependent pollen limitation and reproductive assurance in a wind-pollinated herb with contrasting sexual systems. Journal of Ecology 99, 1531–1539.
| Density-dependent pollen limitation and reproductive assurance in a wind-pollinated herb with contrasting sexual systems.Crossref | GoogleScholarGoogle Scholar |
Horikawa Y (1972) ‘Atlas of the Japanese flora: an introduction to plant sociology of East Asia.’ (Gakken: Tokyo) [In Japanese]
Itioka T, Inoue T, Kaliang H, Kato M, Nagamitsu T, Momose K, Sakai S, Yumoto T, Mohamad SU, Hamid AA, Yamane S (2001) Six-year population fluctuation of the giant honey bee Apis dorsata (Hymenoptera: Apidae) in a tropical lowland dipterocarp forest in Sarawak. Annals of the Entomological Society of America 94, 545–549.
| Six-year population fluctuation of the giant honey bee Apis dorsata (Hymenoptera: Apidae) in a tropical lowland dipterocarp forest in Sarawak.Crossref | GoogleScholarGoogle Scholar |
Karrenberg S, Kollmann J, Edwards PJ (2002) Pollen vectors and inflorescence morphology in four species of Salix. Plant Systematics and Evolution 235, 181–188.
| Pollen vectors and inflorescence morphology in four species of Salix.Crossref | GoogleScholarGoogle Scholar |
Kulju KKM, Sierra SEC, Draisma SGA, Samuel R, Welzen PCV (2007) Molecular phylogeny of Macaranga, Mallotus, and related genera (Euphorbiaceae s.s.): insights from plastid and nuclear DNA sequence data. American Journal of Botany 94, 1726–1743.
| Molecular phylogeny of Macaranga, Mallotus, and related genera (Euphorbiaceae s.s.): insights from plastid and nuclear DNA sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqu7%2FM&md5=cfd20fc0eae078b70632e02de9be5794CAS |
Levin DA, Kerster HW (1974) Gene flow in seed plants. Evolutionary Biology 7, 139–220.
| Gene flow in seed plants.Crossref | GoogleScholarGoogle Scholar |
Listabarth C (1993) Insect-induced wind pollination of the palm Chamaedorea pinnatifrons and pollination in the related Wendlandiella sp. Biodiversity and Conservation 2, 39–50.
| Insect-induced wind pollination of the palm Chamaedorea pinnatifrons and pollination in the related Wendlandiella sp.Crossref | GoogleScholarGoogle Scholar |
Lock JM, Hall JB (1982) Floral biology of Mallotus oppositifolius (Euphorbiaceae). Biotropica 14, 153–155.
| Floral biology of Mallotus oppositifolius (Euphorbiaceae).Crossref | GoogleScholarGoogle Scholar |
Mangla Y, Tandon R (2011) Insects facilitate wind pollination in pollen-limited Crateva adansonii (Capparaceae). Australian Journal of Botany 59, 61–69.
| Insects facilitate wind pollination in pollen-limited Crateva adansonii (Capparaceae).Crossref | GoogleScholarGoogle Scholar |
Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu H, Sakai S, Harrison RD, Itioka T, Hamid AA, Inoue T (1998) Pollination biology in a lowland dipterpcarp forest in Sarawak, Malaysia. I. Characteristics of the plant–pollinator community in a lowland dipterocarp forest. American Journal of Botany 85, 1477–1501.
| Pollination biology in a lowland dipterpcarp forest in Sarawak, Malaysia. I. Characteristics of the plant–pollinator community in a lowland dipterocarp forest.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnhslSmuw%3D%3D&md5=5940391dcb50354eafd84ac3f7c30696CAS |
Moog U, Fiala B, Federle W, Maschwitz U (2002) Thrips pollination of the dioecious ant plant Macaranga hullettii (Euphorbiaceae) in Southeast Asia. American Journal of Botany 89, 50–59.
| Thrips pollination of the dioecious ant plant Macaranga hullettii (Euphorbiaceae) in Southeast Asia.Crossref | GoogleScholarGoogle Scholar |
Nowicke JW, Takahashi M (2002) Pollen morphology, exine structure and systematics of Acalyphoideae (Euphorbiaceae), Part 4, Tribes Acalypheae pro parte (Erythrococca, Claoxylon, Claoxylopsis, Mareya, Mareyopsis, Discoclaoxylon, Micrococca, Amyrea, Lobanilia, Mallotus, Deuteromallotus, Cordemoya, Cococceras, Trewia, Neotrewia, Rockinghamia, Octospermum, Acalypha, Lasiococca, Spathiostemon, Homonoia), Plukenetieae (Haematostemon, Astrococcus, Angostyles, Romanoa, Eleutherostigma, Plukenetia, Vigia, Cnesmone, Megistostigma, Sphaerostylis, Tragiella, Platygyna, Tragia, Acidoton, Pachystylidium, Dalechampia), Omphaleae (Omphalea), and discussion and summary of the complete subfamily. Review of Palaeobotany and Palynology 121, 231–336.
| Pollen morphology, exine structure and systematics of Acalyphoideae (Euphorbiaceae), Part 4, Tribes Acalypheae pro parte (Erythrococca, Claoxylon, Claoxylopsis, Mareya, Mareyopsis, Discoclaoxylon, Micrococca, Amyrea, Lobanilia, Mallotus, Deuteromallotus, Cordemoya, Cococceras, Trewia, Neotrewia, Rockinghamia, Octospermum, Acalypha, Lasiococca, Spathiostemon, Homonoia), Plukenetieae (Haematostemon, Astrococcus, Angostyles, Romanoa, Eleutherostigma, Plukenetia, Vigia, Cnesmone, Megistostigma, Sphaerostylis, Tragiella, Platygyna, Tragia, Acidoton, Pachystylidium, Dalechampia), Omphaleae (Omphalea), and discussion and summary of the complete subfamily.Crossref | GoogleScholarGoogle Scholar |
Pacala SW (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecological Monographs 66, 1–43.
| Forest models defined by field measurements: estimation, error analysis and dynamics.Crossref | GoogleScholarGoogle Scholar |
Peeters L, Totland O (1999) Wind to insect pollination ratios and floral traits in five alpine Salix species. Canadian Journal of Botany 77, 556–563.
Proctor M, Yeo P, Lack A (1996) ‘The natural history of pollination.’ (Timber Press: Portland, OR)
R Development Core Team (2010) ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna). Available at http://www.R-project.org [Verified 27 November 2012]
Roubik DW, Sakai S, Hamid AA (2005) ‘Pollination ecology and the rain forest.’ (Springer: New York)
Sakai S, Harrison RD, Momose K, Kuraji K, Nagamasu H, Yasunari T, Chong L, Nakashizuka T (2006) Irregular droughts trigger mass flowering in aseasonal tropical forests in Asia. American Journal of Botany 93, 1134–1139.
| Irregular droughts trigger mass flowering in aseasonal tropical forests in Asia.Crossref | GoogleScholarGoogle Scholar |
Schulke B, Waser NM (2001) Long-distance pollinator flights and pollen dispersal between populations of Delphinium nuttallianum. Oecologia 127, 239–245.
| Long-distance pollinator flights and pollen dispersal between populations of Delphinium nuttallianum.Crossref | GoogleScholarGoogle Scholar |
Sierra SEC, Aparicio M, Gebraad MJH, Kulju KKM, Welzen PCV (2007) The morphological range in Mallotus (Euphorbiaceae) and a taxonomic revision of its section Rottleropsis (including Axenfeldia) in Malesia, Thailand and Africa. Blumea 52, 21–113.
| The morphological range in Mallotus (Euphorbiaceae) and a taxonomic revision of its section Rottleropsis (including Axenfeldia) in Malesia, Thailand and Africa.Crossref | GoogleScholarGoogle Scholar |
Sierra SEC, Kulju KKM, Fišer Ž, Aparicio M, Welzen PCV (2010) The phylogeny of Mallotus s.str. (Euphorbiaceae) inferred from DNA sequence and morphological data. Taxon 59, 101–116.
Slik JWF (2005) Assessing tropical lowland forest disturbance using plant morphological and ecological attributes. Forest Ecology and Management 205, 241–250.
| Assessing tropical lowland forest disturbance using plant morphological and ecological attributes.Crossref | GoogleScholarGoogle Scholar |
Stellman P (1984) The significance of biotic pollination in a nominally anemophilous plant: Plantago lanceolata. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series C. Biological and Medical Sciences 87, 95–119.
Steven JC, Waller DM (2007) Isolation affects reproductive success in low-density but not high-density populations of two wind-pollinated Thalictrum species. Plant Ecology 190, 131–141.
| Isolation affects reproductive success in low-density but not high-density populations of two wind-pollinated Thalictrum species.Crossref | GoogleScholarGoogle Scholar |
Tamura S, Kudo G (2000) Wind pollination and insect pollination of two temperate willow species, Salix miyabeana and Salix sachalinensis. Plant Ecology 147, 185–192.
| Wind pollination and insect pollination of two temperate willow species, Salix miyabeana and Salix sachalinensis.Crossref | GoogleScholarGoogle Scholar |
Totland Ø, Sottocornola M (2001) Pollen limitation of reproductive success in two sympatric alpine willows (Salicaceae) with contrasting pollination strategies. American Journal of Botany 88, 1011–1015.
| Pollen limitation of reproductive success in two sympatric alpine willows (Salicaceae) with contrasting pollination strategies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MrpvV2htg%3D%3D&md5=ceb41c6ab0122c78021e96cd517bde76CAS |
Van Welzen PCV, Sierra SEC (2006) The Mallotus wrayi complex (Euphorbiaceae). Blumea 51, 373–388.
| The Mallotus wrayi complex (Euphorbiaceae).Crossref | GoogleScholarGoogle Scholar |
Vandepitte K, Roldán-Ruiz I, Honnay O (2009) Reproductive consequences of mate quantity versus mate diversity in a wind-pollinated plant. Acta Oecologica 35, 548–553.
| Reproductive consequences of mate quantity versus mate diversity in a wind-pollinated plant.Crossref | GoogleScholarGoogle Scholar |
Vikas , Tandon R (2011) Reproductive biology of Azadirachta indica (Meliaceae), a medicinal tree species from arid zones. Plant Species Biology 26, 116–123.
| Reproductive biology of Azadirachta indica (Meliaceae), a medicinal tree species from arid zones.Crossref | GoogleScholarGoogle Scholar |
Warren SD, Harper KT, Booth GM (1988) Elevational distribution of insect pollinators. American Midland Naturalist 120, 325–330.
| Elevational distribution of insect pollinators.Crossref | GoogleScholarGoogle Scholar |