Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Effects of seed vernalisation and photoperiod on flowering induction in the halophyte Thellungiella halophila

Yuhua Guo A , Dian Wang A , Wenjuan Jia A , Jie Song A , Jianchao Yang A and Baoshan Wang A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, 250014, Jinan, P.R. China.

B Corresponding author. Email: bswang@sdnu.edu.cn

Australian Journal of Botany 60(8) 743-748 https://doi.org/10.1071/BT12180
Submitted: 9 July 2012  Accepted: 17 September 2012   Published: 30 November 2012

Abstract

Salt cress, Thellungiella halophila, is a late-flowering, halophytic plant that requires a prolonged period of vernalisation to flower. This poorly defined vernalisation requirement restricts the use of T. halophila as a model plant for the study of salt-stress tolerance. To facilitate research on T. halophila, the present study quantified the effects of seed vernalisation and photoperiod on its flowering. Imbibed seeds of T. halophila responded to a cold treatment (4°C), and flowering was optimal after 30 days of seed vernalisation. A longer vernalisation period shortened the time until the first flower appeared, increased the number of flowers and reduced expression of ThFLC (a repressor of flowering). Plants growing from seed that had been vernalised for 30 days did not flower when daylength was <9 h, and daylengths >9 h promoted flowering. Therefore, like for many plants in this clade of the Brassicaceae, vernalisation requirement and long-day response are features of T. halophila. These results will facilitate the use T. halophila as a model plant for the study of abiotic stress.

Additional keywords: daylength, ecotype, FLC, seed vernalisation duration.


References

Abbo S, Lev-Yadun S, Galwey N (2002) Vernalization response of wild chickpea. New Phytologist 154, 695–701.
Vernalization response of wild chickpea.Crossref | GoogleScholarGoogle Scholar |

Alonso-Blanco C, El-Assal SED, Coupland G, Koornneef M (1998) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149, 749–764.

Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Molecular Plant 2, 3–12.
Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2msbk%3D&md5=c4925804c873ea605c19cd928d75a4f5CAS |

Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiology 138, 127–130.
Abiotic stress and plant genome evolution. Search for new models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks12iur8%3D&md5=2c4a686cab6faf6b99903244b4a9286cCAS |

Ballerini ES, Kramer EM (2011) Environmental and molecular analysis of the floral transition in the lower eudicot Aquilegia formosa. EvoDevo 2, 4
Environmental and molecular analysis of the floral transition in the lower eudicot Aquilegia formosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1SksL4%3D&md5=61f6022e9375058fd7c50db52a3a7bbcCAS |

Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993) Physiological signals that induce flowering. The Plant Cell 5, 1147–1155.

Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiology 127, 1354–1360.
Learning from the Arabidopsis experience. The next gene search paradigm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVWitA%3D%3D&md5=7281b00491c421bd02c2fe9096e59cb0CAS |

Cleland CF, Briggs WR (1967) Flowering responses of the long-day plant Lemna gibba G3. Plant Physiology 42, 1553–1561.
Flowering responses of the long-day plant Lemna gibba G3.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cngvVyktw%3D%3D&md5=61f91043d439fd244dfe2bb7d087878dCAS |

Dennis ES, Peacock WJ (2009) Vernalization in cereals. Journal of Biology 8, 57
Vernalization in cereals.Crossref | GoogleScholarGoogle Scholar |

Erwin J (2006) Factors affecting flowering in ornamental plants. In ‘Flower breeding and genetics: issues, challenges and opportunities for the 21st century’. (Ed. NO Anderson) pp. 7–48. (CABI Publishing: Wallingford, UK)

Fang Q, Xu Z, Song R (2006) Cloning, characterization and genetic engineering of FLC homolog in Thellungiella halophila. Biochemical and Biophysical Research Communications 347, 707–714.
Cloning, characterization and genetic engineering of FLC homolog in Thellungiella halophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xntl2jsbc%3D&md5=20aebbcf6d52e048f5c45fe8423df995CAS |

Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. The Plant Journal 44, 826–839.
Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWltrbN&md5=16c6b09104ea6c076a63e59bc68cabeeCAS |

Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist T, Goodwin S, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith D, Jenks M, Rhodes D, Hasegawa P, Bohnert H, Joly R, Bressan R, Zhu J (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiology 135, 1718–1737.
Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOqsbg%3D&md5=2d34c219c167765c171c19452b840067CAS |

Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344–347.
Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVGiurw%3D&md5=f40646115adfff1032fc9ba811af35e9CAS |

Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W (1998) Genetic control of flowering time in Arabidopsis. Annual Review of Plant Biology 49, 345–370.
Genetic control of flowering time in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvVShur4%3D&md5=1d0042e90b5b3452de06a100bae46768CAS |

Kubota S, Momose H, Yoneda K, Koshioka M (2010) Lavandula × intermedia is a vernalization type plant. Japan Agricultural Research Quarterly 44, 67–72.
Lavandula × intermedia is a vernalization type plant.Crossref | GoogleScholarGoogle Scholar |

Michaels SD (2009) Flowering time regulation produces much fruit. Current Opinion in Plant Biology 12, 75–80.
Flowering time regulation produces much fruit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlyjtQ%3D%3D&md5=dbb508deeaf514d09d94f7ea9a4176e4CAS |

Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11, 949–956.

Michaels S, Amasino R (2000) Memories of winter: vernalization and the competence to flower. Plant, Cell & Environment 23, 1145–1153.
Memories of winter: vernalization and the competence to flower.Crossref | GoogleScholarGoogle Scholar |

Nordborg M, Bergelson J (1999) The effect of seed and rosette cold treatment on germination and flowering time in some Arabidopsis thaliana (Brassicaceae) ecotypes. American Journal of Botany 86, 470–475.
The effect of seed and rosette cold treatment on germination and flowering time in some Arabidopsis thaliana (Brassicaceae) ecotypes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnhtVKjsA%3D%3D&md5=c358789da3dde6b3e97ec2eff3bf06c5CAS |

Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. Journal of Proteome Research 9, 2584–2599.
Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVKrur8%3D&md5=17416266e8a04fd261c32551bff45e76CAS |

Sanda S, John M, Amasino R (1997) Analysis of flowering time in ecotypes of Arabidopsis thaliana. The Journal of Heredity 88, 69–72.
Analysis of flowering time in ecotypes of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3gtVGisg%3D%3D&md5=170b11e1a17b855859581f0d996698eaCAS |

Sasani S, Hemming MN, Oliver SN, Greenup A, Tavakkol-Afshari R, Mahfoozi S, Poustini K, Sharifi HR, Dennis ES, Peacock WJ (2009) The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare). Journal of Experimental Botany 60, 2169–2178.
The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFSjtb8%3D&md5=c5359ebcdbd3f0d1645d0a69c9428c47CAS |

Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. The Plant Cell 11, 445–458.

Suge H (1984) Re-examination on the role of vernalization and photoperiod in the flowering of Brassica crops under controlled environment. Japanese Journal of Plant Breeding 34, 171–180.

Theißen G (2006) Plant Breeding: MADS ways of memorizing winter: vernalization in weed and wheat. Progress in Botany 67, 162–177.
Plant Breeding: MADS ways of memorizing winter: vernalization in weed and wheat.Crossref | GoogleScholarGoogle Scholar |

Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends in Plant Science 12, 352–357.
The molecular basis of vernalization-induced flowering in cereals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFGqu70%3D&md5=ab8d7a16227e5b77f41fdfd94a1d55cbCAS |

Turesson G (1922) The species and the variety as ecological units. Hereditas 3, 100–113.
The species and the variety as ecological units.Crossref | GoogleScholarGoogle Scholar |

Wang Z, Li P, Fredricksen M, Gong Z, Kim C, Zhang C, Bohnert H, Zhu J, Bressan R, Hasegawa P (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Science 166, 609–616.
Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWgsLg%3D&md5=21c7120184be956a8fc15264874e13b4CAS |

Werner JE, Finkelstein RR (1995) Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiologia Plantarum 93, 659–666.
Arabidopsis mutants with reduced response to NaCl and osmotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFCnu70%3D&md5=fcb4a887b31d0ba15bc4bd3cd372c84fCAS |

Wu H-J, Zhang Z, Wang J-Y, Oh D-H, Dassanayake M, Liu B, Huang Q, Sun H-X, Xia R, Wu Y, Wang Y-N, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Leed SY, Cheesemanc JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen S-Y, Bohnertc HJ, Zhu J-K, Wang X-J, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proceedings of the National Academy of Sciences, USA 109, 12 219–12 224.
Insights into salt tolerance from the genome of Thellungiella salsuginea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GktbvN&md5=98750be1b4a76a37105c65c4131c6c4dCAS |

Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640
The wheat VRN2 gene is a flowering repressor down-regulated by vernalization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFCnsb0%3D&md5=6671873f6e9bd8be61a9b6710a3d1f90CAS |

Zhu JK (2001) Plant salt tolerance. Trends in Plant Science 6, 66–71.
Plant salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFyjtLs%3D&md5=e6891ff4a358f68de823d21eae259c13CAS |