Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Analysis of codon usage patterns of the chloroplast genomes in the Poaceae family

Yuerong Zhang A B E , Xiaojun Nie B E , Xiaoou Jia B , Cunzhen Zhao D , Siddanagouda S. Biradar B , Le Wang B , Xianghong Du C and Song Weining A B C F
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.

B College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.

C Yangling Branch of China Wheat Improvement Centre, Northwest A&F University, Yangling 712100, Shaanxi, China.

D College of Animal Science, Northwest A&F University, Yangling 712100, Shaanxi, China.

E These authors contributed equally to this work.

F Corresponding author. Email: sweining2002@yahoo.com

Australian Journal of Botany 60(5) 461-470 https://doi.org/10.1071/BT12073
Submitted: 27 March 2012  Accepted: 26 May 2012   Published: 13 August 2012

Abstract

Codon usage patterns of 23 Poaceae chloroplast genomes were analysed in this study. Neutrality analysis indicated that the codon usage patterns have significant correlations with GC12 and GC3 and also showed strong bias towards a high representation of NNA and NNT codons. The Nc-plot showed that although a large proportion of points follow the parabolic line of trajectory, several genes with low ENc values lie below the expected curve, suggesting that mutational bias played a major role in the codon biology of the Poaceae chloroplast genome. Parity Rule 2 plot analysis showed that T was used more frequently than A in all the genomes. Correspondence analysis of relative synonymous codon usage indicated that the first axis explained only a partial amount of variation of codon usage. Furthermore, the gene length and expression level were also found to drive codon usage variation. These findings revealed that besides natural selection, other factors might also exert some influences in shaping the codon usage bias in Poaceae chloroplast genomes. The optimal codons of these 23 genomes were also identified in this study.

Additional keywords: mutational bias, optimal codon.


References

Bellgard M, Schibeci D, Trifonov E, Gojobori T (2001) Early detection of G + C differences in bacterial species inferred from the comparative analysis of the two completely sequenced Helicobacter pylori strains. Journal of Molecular Evolution 53, 465–468.
Early detection of G + C differences in bacterial species inferred from the comparative analysis of the two completely sequenced Helicobacter pylori strains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVahsrs%3D&md5=f8a614f324bf26621a17183f48228610CAS |

Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422, 633–637.
Noise in eukaryotic gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislCgtLc%3D&md5=6108682c310df46d7b6aa85044c343e9CAS |

Campbell WH, Gowri G (1990) Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiology 92, 1–11.
Codon usage in higher plants, green algae, and cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXpt1KjsQ%3D%3D&md5=1e73cce2ce324115bccb331a0841a411CAS |

Carels N, Bernardi G (2000) Two classes of genes in plants. Genetics 154, 1819–1825.

Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA (2002) Selection for short introns in highly expressed genes. Nature Genetics 31, 415–418.

Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 96, 4482–4487.
Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1yls7Y%3D&md5=7b2df6552368cee28739fc895e1e4e6bCAS |

Eyre-Walker A (1996) Synonymous codon bias is related to gene length in Escherichia coli: selection for translational accuracy? Molecular Biology and Evolution 13, 864–872.
Synonymous codon bias is related to gene length in Escherichia coli: selection for translational accuracy?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktFygsrc%3D&md5=f9a6b372f1f5b4ab03038f18343cecb5CAS |

Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phylogeny: noncoding versus rbcL sequences. Molecular Biology and Evolution 11, 769–777.

Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Research 10, 7055–7074.
Codon usage in bacteria: correlation with gene expressivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXivVOquw%3D%3D&md5=84f5cfb88cfd492517027d67b7b40b66CAS |

Grantham R, Gautier C, Gouy M (1980) Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Research 8, 1893–1912.
Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXks1Cjt7k%3D&md5=40cdcfa6c10236d8191097d47b8c35e9CAS |

Grantham R, Gautier C, Gouy M, Jacobzone M, Mercier R (1981) Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Research 9, 213
Codon catalog usage is a genome strategy modulated for gene expressivity.Crossref | GoogleScholarGoogle Scholar |

Gupta SK, Bhattacharyya TK, Ghosh TC (2004) Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection. Journal of Biomolecular Structure & Dynamics 21, 527–535.
Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVGrsQ%3D%3D&md5=0f2ce5e5a328fcdcd4c3641144991d01CAS |

Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE 6, e19254
Choosing and using a plant DNA barcode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVajt7Y%3D&md5=4379927f96f42d7847927fa089cb660dCAS |

Hou ZC, Yang N (2000) Analysis of factors shaping S. pneumoniae codon usage. Acta Genetica Sinica 29, 747–752.

Howe CJ, Barbrook AC, Koumandou VL, Nisbet RE, Symington HA (2003) Evolution of the chloroplast genome. Philosophical Transactions of the Royal Society B Biological Sciences 358, 99–107.
Evolution of the chloroplast genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWhsr0%3D&md5=ef77a603d43697dc6978224b68b21af7CAS |

Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Molecular Biology and Evolution 2, 13–34.

Jia J, Xue Q (2009) Codon usage biases of transposable elements and host nuclear genes in Arabidopsis thaliana and Oryza sativa. Genomics, Proteomics & Bioinformatics 7, 175–184.
Codon usage biases of transposable elements and host nuclear genes in Arabidopsis thaliana and Oryza sativa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVyrt7s%3D&md5=2980a5e803d5b5f9e3963355e3b7437bCAS |

Kawabe A, Miyashita NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes & Genetic Systems 78, 343–352.
Patterns of codon usage bias in three dicot and four monocot plant species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFehurk%3D&md5=a692c0088a53421350b61d5f585b9f96CAS |

Le Z, Jin LG, Luo L, Wang YP, Dong ZM, Sun SH, Qiu LJ (2011) Analysis of nuclear gene codon bias on soybean genome and transcriptome. Acta Agronomica Sinica 37, 965–974.
Analysis of nuclear gene codon bias on soybean genome and transcriptome.Crossref | GoogleScholarGoogle Scholar |

Lescot M, Piffanelli P, Ciampi AY, Ruiz M, Blanc G, Leebens-Mack J, da Silva FR, Santos MR, D’Hont A, Garsmeur O, Vilarinhos AD, Kanamori H, Matsumoto T, Ronning CM, Cheung F, Haas BJ, Althoff R, Arbogast T, Hine E, Pappas GJ, Sasaki T, Souza MT, Miller R, Glaszmann JC, Town CD (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 9, 58
Insights into the Musa genome: syntenic relationships to rice and between Musa species.Crossref | GoogleScholarGoogle Scholar |

Liu QP (2006) Analysis of codon usage pattern in the radioresistant bacterium Deinococcus radiodurans. Bio Systems 85, 99–106.
Analysis of codon usage pattern in the radioresistant bacterium Deinococcus radiodurans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslGrtL4%3D&md5=56e216cc56094c7e8d311310e6673e27CAS |

Liu QP, Xue QZ (2005) Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. Journal of Genetics 84, 55–62.
Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVCgtr0%3D&md5=8bbe33a47768564b3e3cd1d89ffa9033CAS |

Lu H, Zhao WM, Zheng Y, Wang H, Qi M, Yu XP (2005) Analysis of synonymous codon usage bias in Chlamydia. Acta Biochimica et Biophysica Sinica 37, 1–10.
Analysis of synonymous codon usage bias in Chlamydia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1ars7w%3D&md5=93ac011094b55d8bc7fd8d8346b0fe90CAS |

Lynn DJ, Singer GA, Hickey DA (2002) Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Research USA 30, 4272–4277.
Synonymous codon usage is subject to selection in thermophilic bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVemurY%3D&md5=7c5dbefc6ce63c39d74d8fc67020d11fCAS |

McInerney JO (1998) Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proceedings of the National Academy of Sciences of the United States of America 95, 10698–10703.
Replicational and transcriptional selection on codon usage in Borrelia burgdorferi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvFWgsrk%3D&md5=123c2ec520ae7d0eb89aa4b232a58278CAS |

Rosenberg MS, Subramanian S, Kumar S (2003) Patterns of transitional mutation biases within and among mammalian genomes. Molecular Biology and Evolution 20, 988–993.
Patterns of transitional mutation biases within and among mammalian genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCgur4%3D&md5=80e711bf5cd467fa098c355b9e9b4361CAS |

Sablok G, Nayak KC, Vazquez F, Tatarinova TV (2011) Synonymous codon usage, GC3, and evolutionary patterns across plastomes of three pooid model species: emerging grass genome models for monocots. Molecular Biotechnology 49, 116–128.
Synonymous codon usage, GC3, and evolutionary patterns across plastomes of three pooid model species: emerging grass genome models for monocots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKiu77I&md5=a08bc4d6073178cdbf733df875e7913eCAS |

Sharp PM, Li WH (1987) The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research 15, 1281–1295.
The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtlejtrc%3D&md5=f7222caedaf8ffd7da372052bc756685CAS |

Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F (1988) Codon usage in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Research 16, 8207–8211.
Codon usage in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVCqsbc%3D&md5=15201c52fcf4f6763170c596dbf7c6f3CAS |

Sharp PM, Emery LR, Zeng K (2010) Forces that influence the evolution of codon bias. Philosophical Transactions of the Royal Society Biological Sciences 365, 1203–1212.
Forces that influence the evolution of codon bias.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFCmsLk%3D&md5=819097ede520a4ab99c3d9d7e7464c05CAS |

Shaw J, Lickey EB, Beck JT, Farmer SS, Liu W, Miller J, Chaw SK, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92, 142–166.
The tortoise and the hare: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Klsbc%3D&md5=b3a3088fe3c6bd2eb55a05e9387d2f7eCAS |

Sueoka N (1962) On the genetic basis of variation and heterogeneity of DNA base composition. Proceedings of the National Academy of Sciences of the United States of America 48, 582–592.
On the genetic basis of variation and heterogeneity of DNA base composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktlSqtbY%3D&md5=5536938fbca8d3a2bd560761494b6d74CAS |

Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proceedings of the National Academy of Sciences of the United States of America 85, 2653–2657.
Directional mutation pressure and neutral molecular evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktF2isbc%3D&md5=7731150aac99e6e5ffcb63d7d05e2e69CAS |

Sueoka N (1999) Translation-coupled violation of parity rule human genes is not the case of heterogeneity of the DNA G + C content of third codon position. Gene 238, 53–58.
Translation-coupled violation of parity rule human genes is not the case of heterogeneity of the DNA G + C content of third codon position.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFKnur8%3D&md5=49c0f7172de2724bd99fed8204269060CAS |

Sueoka N, Kawanishi Y (2000) DNA G + C content of the third codon position and codon usage biases of human genes. Gene 261, 53–62.
DNA G + C content of the third codon position and codon usage biases of human genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvF2msQ%3D%3D&md5=6d92364e010ae9d083b4a23bbf53b3e5CAS |

Sugiura M (1992) The chloroplast genome. Plant Molecular Biology 19, 149–168.
The chloroplast genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xks1ertb8%3D&md5=ad66be8fb38cc3bca8300050be062c27CAS |

Tatarinova TV, Alexandrov NN, Bouck JB, Feldmann KA (2010) GC3 biology in corn, rice, sorghum and other grasses. BMC Genomics 11, 308
GC3 biology in corn, rice, sorghum and other grasses.Crossref | GoogleScholarGoogle Scholar |

Wan XF, Xu D, Kleinhofs A, Zhou JZ (2004) Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes. BMC Evolutionary Biology 4, 19
Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes.Crossref | GoogleScholarGoogle Scholar |

Wang B, Yuan J, Liu J, Jin L, Chen JQ (2011) Codon usage bias and determining forces in green plant mitochondrial genomes. Journal of Integrative Plant Biology 53, 324–334.
Codon usage bias and determining forces in green plant mitochondrial genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVKit7Y%3D&md5=602cffe1af368c98574174ed1b6a252bCAS |

Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87, 23–29.
The ‘effective number of codons’ used in a gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktVWmsbo%3D&md5=735124b5179d4c35141ab8f2fa781fe6CAS |

Xia X (1998) How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics 149, 37–44.