Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Genomic constitution and phylogenetic position of several New Zealand Triticeae species revealed by two single copy nuclear genes

Aimee G. Oliver A B , Kara Harnish A B and Genlou Sun A C
+ Author Affiliations
- Author Affiliations

A Biology Department, Saint Mary’s University, Halifax, Nova Scotia, B3H 3C3, Canada.

B Equal contribution to this work.

C Corresponding author. Email: genlou.sun@smu.ca

Australian Journal of Botany 59(1) 1-6 https://doi.org/10.1071/BT10195
Submitted: 6 August 2010  Accepted: 7 November 2010   Published: 10 February 2011

Abstract

Three genera of Triticeae, Elymus, Stenostachys and Australopyrum, are described in the New Zealand flora. Cytological analyses suggested that five basic genomes (St, H, Y, P and W) donated by different diploid species in different combinations exist in the genera Elymus and Stenostachys, whereas Australopyrum species contain the W genome only. Morphological and cytogenetic data suggested that the genome constitution for both E. apricus and E. multiflorus is StYW. Chloroplast DNA and ITS data supported the genome constitution of these Elymus species, but the HW genome constitution was assigned to the Stenostachys species. In this study, sequences of two single copy nuclear genes, RPB2 and DMC1, were used to confirm or refute the genome constitutions of the two Stenostachys species and the two Elymus species from New Zealand, and to analyse their phylogenetic relationships with other Elymus species. Our RPB2 and DMC1 data confirmed that the genome constitution of hexaploid E. apricus is StWY, and tetraploid S. gracilis is HW. The presence of the StW genome in hexaploid E. multiflorus, and the W genome in tetraploid S. laevis is also confirmed. No obvious St genome differentiation between New Zealand and non-New Zealand species is observed. The H genomes in the S. gracilis and S. laevis are closely related to the H genome from North American species, indicating that the H genomes in these two New Zealand species might originate from North American Hordeum species.


References

Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Systematic Biology 55, 539–552.
Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative.Crossref | GoogleScholarGoogle Scholar | 16785212PubMed |

Connor HE (1994) Indigenous New Zealand Triticeae: Gramineae. New Zealand Journal of Botany 32, 125–154.

Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In ‘Gene manipulation in plant improvement’. (Ed. JP Gustafsen) pp. 209–279. (Plenum Press: New York)

Dewey R (1968) Synthetic Agropyron–Elymus hybrids. III Elymus canadensis × Agropyron caninum, A. trachycaulum and A. striatum. American Journal of Botany 55, 1133–1139.
Synthetic Agropyron–Elymus hybrids. III Elymus canadensis × Agropyron caninum, A. trachycaulum and A. striatum.Crossref | GoogleScholarGoogle Scholar |

Dewey R (1982) Genomic and phylogenetic relationships among North American perennial Triticeae. In ‘Grasses and grasslands’. (Ed. JR Estes) pp. 51–88. (Oklahoma University Press: Norman, OK)

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Crossref | GoogleScholarGoogle Scholar | 14530136PubMed |

Jensen KB, Salomon B (1995) Cytogenetics and morphology of Elymus panormitanus var. heterophyllus (Keng) Á. Löve and its relationship to Elymus panormitanus (Poaceae: Triticeae). International Journal of Plant Sciences 156, 731–739.
Cytogenetics and morphology of Elymus panormitanus var. heterophyllus (Keng) Á. Löve and its relationship to Elymus panormitanus (Poaceae: Triticeae).Crossref | GoogleScholarGoogle Scholar |

Junghans H, Metzlaff M (1990) A simple and rapid method for the preparation of total plant DNA. BioTechniques 8, 176

Liu Q, Ge S, Tang H, Zhang XL, Zhu GF, Lu BR (2006) Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytologist 170, 411–420.
Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFamtb4%3D&md5=23f6810285b9d10f589bf2f96f8cdce7CAS | 16608465PubMed |

Löve Á (1984) Conspectus of the Triticeae. Feddes Repertorium 95, 468–473.

Löve Á, Connor HE (1982) Relationships and taxonomy of New Zealand wheatgrasses. New Zealand Journal of Botany 20, 169–186.

Lu BR, Salomon B (1992) Differentiation of the SY genomes in Asiatic Elymus. Hereditas 116, 121–126.

Lu BR, von Bothmer R (1990) Cytological studies of dihaploid and hybrid from intergeneric cross Elymus shandongensis × Triticum aestivum. Hereditas 111, 231–238.
Cytological studies of dihaploid and hybrid from intergeneric cross Elymus shandongensis × Triticum aestivum.Crossref | GoogleScholarGoogle Scholar |

Mason-Gamer RJ (2001) Origin of North America Elymus (Poaceae: Triticeae) allotetraploids based on granule-bound starch synthase gene sequences. Systematic Botany 26, 757–758.

Mason-Gamer RJ, Orme NL, Anderson CM (2002) Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome 45, 991–1002.
Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOquw%3D%3D&md5=408b3571f95c8600458eb05b7554189aCAS | 12502243PubMed |

Mason-Gamer RJ, Burns MM, Naum M (2010) Phylogenetic relationships and reticulation among Asian Elymus (Poaceae) allotetraploids: analyses of three nuclear gene trees. Molecular Phylogenetics and Evolution 54, 10–22.
Phylogenetic relationships and reticulation among Asian Elymus (Poaceae) allotetraploids: analyses of three nuclear gene trees.Crossref | GoogleScholarGoogle Scholar | 19818864PubMed |

McMillan E, Sun GL (2004) Genetic relationships of tetraploid Elymus species and their genomic donor species inferred from polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions. Theoretical and Applied Genetics 108, 535–542.
Genetic relationships of tetraploid Elymus species and their genomic donor species inferred from polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFSlsQ%3D%3D&md5=20fbd46f112eb1ef9e5f2c3c65e76d82CAS | 14513222PubMed |

Petersen G, Seberg O (2002) Molecular evolution and phylogenetic application of DMC1. Molecular Phylogenetics and Evolution 22, 43–50.
Molecular evolution and phylogenetic application of DMC1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xktl2isQ%3D%3D&md5=0cbc1ce1544d13cc252ad586034a9c55CAS | 11796028PubMed |

Redinbaugh MG, Jones TA, Zhang Y (2000) Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. Genome 43, 846–852.
Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVWltrg%3D&md5=a5649cf3b8b0a23a6008e6e236954ea4CAS | 11081975PubMed |

Ronquist F, Huelsenbeck JP (2005) Bayesian analysis of molecular evolution using MrBayes. In ‘Statistical Methods in Molecular Evolution’. (Ed. R Nielsen) pp. 183–232. (Springer-Verlag: New York)

Stewart AV, Ellison N, Salomon B, Connor HE (2005) Genomic constitution of the New Zealand Triticeae. Czech Journal of Genetics and Plant Breeding 41, 98–100.

Sun GL, Komatsuda T (2010) Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences. Molecular Phylogenetics and Evolution 56, 727–733.
Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVCnur4%3D&md5=23d63b822e1867f67a81f6513143042cCAS | 20363342PubMed |

Sun GL, Daley T, Ni Y (2007) Molecular evolution and genome divergence at RPB2 gene of the St and H genome in Elymus species. Plant Molecular Biology 64, 645–655.
Molecular evolution and genome divergence at RPB2 gene of the St and H genome in Elymus species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlajsLs%3D&md5=f4493586fd2e541ac0d3f999790692b7CAS | 17551673PubMed |

Sun GL, Ni Y, Daley T (2008) Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Molecular Phylogenetics and Evolution 46, 897–907.

Swofford DL (2003) ‘PAUP beta version 4.0b2. Phylogenetic Analysis using Parsimony – Macintosh version.’ (Sinaeur Associates: Sunderland, MA)

Thompson JD, Gibson TJ, Plewniak BF, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment by quality analysis tool. Nucleic Acids Research 25, 4876–4882.
The Clustal X windows interface: flexible strategies for multiple sequence alignment by quality analysis tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=3509e71f7587a578b592f0b15ffdfe10CAS | 9396791PubMed |

Torabinejad J, Mueller RJ (1993) Genome constitution of the Australian hexaploid grass, Elymus scabrus (Poaceae: Triticeae). Genome 36, 147–151.
Genome constitution of the Australian hexaploid grass, Elymus scabrus (Poaceae: Triticeae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitlSgtro%3D&md5=1f90207dbd742bb241da856e1bae2621CAS | 18469977PubMed |

von Bothmer R, Salomon B (1994) Triticeae: a tribe for food, feed and fun. In ‘Proceedings of the 2nd International Triticeae Symposium’. (Eds RRC Wang, KB Jensen, C Jaussi) pp. 1–12. (Utah State University Press: Logan, UT)

Wang RRC, von Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M (1994) Genome symbols in the Triticeae. In ‘Proceeding of the 2nd International Triticeae Symposium’. (Eds RRC Wang, KB Jensen, C Jaussi) pp. 29–34. (Utah State University Press: Logan, UT)