Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Mycosporine-like amino acids profile and their activity under PAR and UVR in a hot-spring cyanobacterium Scytonema sp. HKAR-3

Rajesh P. Rastogi A , Richa A , Shailendra P. Singh B , Donat-P. Häder B and Rajeshwar P. Sinha A C
+ Author Affiliations
- Author Affiliations

A Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India.

B Department of Biology, Friedrich-Alexander University, Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen, Germany.

C Corresponding author. Email: r.p.sinha@gmx.net

Australian Journal of Botany 58(4) 286-293 https://doi.org/10.1071/BT10004
Submitted: 9 January 2010  Accepted: 30 April 2010   Published: 22 June 2010

Abstract

The cyanobacterium Scytonema sp. HKAR-3 isolated from a hot spring in India was investigated for the presence of mycosporine-like amino acids (MAAs) and their induction under PAR and PAR+UVR. High-performance liquid-chromatograph (HPLC) analysis revealed the presence of two MAAs, mycosporine–glycine (λmax = 310 nm) and an unknown MAA-334 (λmax = 334 nm), with retention times of 4.1 and 8.7 min, respectively. This is the first report for the presence of two MAAs and, in particular, the synthesis of mycosporine–glycine in any strain of Scytonema. There was no effect of radiation type (PAR or PAR+UVR) on the synthesis of mycosporine–glycine; however, the synthesis of MAA-334 was found to be higher in samples receiving PAR+UVR than in those receiving PAR only. There was a circadian induction in the synthesis of MAAs under alternate 12-h light (PAR or PAR+UVR) and dark periods. MAAs were found to be induced mostly during the light period and their production dropped again during the dark period. This suggests that the synthesis of MAAs is an energy-dependent process and depends on solar energy for its maintenance in natural habitats.


Acknowledgements

R. P. Rastogi is thankful to University Grants Commission, New Delhi, India, for financial support in the form of a fellowship.


References


Brown AM (2005) A new software for carrying out one-way ANOVA post hoc tests. Computer Methods and Programs in Biomedicine 79, 89–95.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Carreto JI, Carignan MO, Montoya NG (2005) A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organisms. Marine Biology 146, 237–252.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Conde FR, Churio MS, Previtali CM (2000) The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution. Journal of Photochemistry and Photobiology. B, Biology 56, 139–144.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Conde FR, Churio MS, Previtali CM (2004) The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochemical & Photobiological Sciences 3, 960–967.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Crutzen PJ (1992) Ultraviolet on the increase. Nature 356, 104–105.
Crossref | GoogleScholarGoogle Scholar | open url image1

Desikachary TV (1959) ‘Cyanophyta.’ (Indian Council of Agriculture Research: New Delhi)

Dunlap WC, Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comparative Biochemistry and Physiology 112, 105–114.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fleming ED, Castenholz RW (2007) Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environmental Microbiology 9, 1448–1455.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Gao K, Yu H, Brown MT (2007) Solar PAR and UV radiation affects the physiology and morphology of the cyanobacterium Anabaena sp. PCC 7120. Journal of Photochemistry and Photobiology. B, Biology 89, 117–124.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Journal of Phycology 27, 395–409.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Applied and Environmental Microbiology 59, 163–169.
CAS | PubMed |
open url image1

Garcia-Pichel F, Wingard CE, Castenholz RW (1993) Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Applied and Environmental Microbiology 59, 170–176.
CAS | PubMed |
open url image1

Golden SS (1995) Light-responsive gene expression in cyanobacteria. Journal of Bacteriology 177, 1651–1654.
CAS | PubMed |
open url image1

Gröniger A, Häder D-P (2000) Stability of mycosporine-like amino acids. Recent Research Developments in Photochemistry and Photobiology 4, 247–252. open url image1

Häder D-P, Sinha RP (2005) Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact. Mutation Research 571, 221–233.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Häder D-P, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochemical & Photobiological Sciences 6, 267–285.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jha M (1992) Hydrobiological studies on Suraj kund and Chandrama kund, hot springs of Rajgir, Bihar, India. International Review of Hydrobiology 77, 435–443.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Karsten U, Franklin LA, Luning K, Wiencke C (1998) Natural ultraviolet radiation and photosynthetically active radiation induce formation of mycosporine-like amino acids in the marine macroalga Chondrus crispus (rhodophyta). Planta 205, 257–262.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Lesser MP (2008) Effects of ultraviolet radiation on productivity and nitrogen fixation in the cyanobacterium, Anabaena sp. (Newton’s strain). Hydrobiologia 598, 1–9.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Levine E, Thiel T (1987) UV-inducible DNA repair in the cyanobacteria Anabaena spp. Journal of Bacteriology 169, 3988–3993.
CAS | PubMed |
open url image1

Lubin D, Jensen EH (1995) Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends. Nature 377, 710–713.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

McKenzie RL, Björn LO, Bais A, Ilyas M (2003) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochemical & Photobiological Sciences 2, 5–15.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Misonou T, Saitoh J, Oshiba S, Tokitomo Y, Maegawa M, Inoue Y, Hori H, Sakurai T (2003) UV-absorbing substance in the red alga Porphyra yezoensis (Bangiales, Rhodophyta) block thymine photodimer production. Marine Biotechnology 5, 194–200.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mittler R, Tel-Or E (1991) Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC7942. Free Radical Research Communications 13, 845–850.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nakamura H, Kobayashi J, Hirata Y (1982) Separation of mycosporine-like amino acids in marine organisms using reverse-phase high performance liquid chromatography. Journal of Chromatography. A 250, 113–118.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Norval M, Cullen AP, de Gruijl FR, Longstreth J, Takizawa Y, Lucas RM, Noonan FP, van der Leun JC (2007) The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochemical & Photobiological Sciences 6, 232–251.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Oren A (1997) Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiology Journal 14, 231–240.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Phoenix VR, Bennett PC, Engel AS, Tyler SW, Ferris FG (2006) Chilean high-altitude hot-spring sinters: a model system for UV screening mechanisms by early Precambrian cyanobacteria. Geobiology 4, 15–28.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Portwich A, Garcia-Pichel F (2000) A novel prokaryotic UVB photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912. Photochemistry and Photobiology 71, 493–498.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnology Advances 27, 521–539.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Safferman RS, Morris ME (1964) Growth characteristics of the blue-green algal virus LPP-1. Journal of Bacteriology 88, 771–775.
CAS | PubMed |
open url image1

Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In ‘The ecology of cyanobacteria. Their diversity in time and space’. (Eds BA Whitton, M Potts) pp. 13–35. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

Sergeev VN, Gerasimenko LM, Zavarzin GA (2002) The proterozoic history and present state of cyanobacteria. Microbiology 71, 623–637.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Singh SP, Kumari S, Rastogi RP, Singh KL, Sinha RP (2008a) Mycosporine-like amino acids (MAAs): chemical structure, biosynthesis and significance as UV-absorbing/screening compounds. Indian Journal of Experimental Biology 46, 7–17.
CAS | PubMed |
open url image1

Singh SP, Sinha RP, Klisch M, Häder D-P (2008b) Mycosporine-like amino acids (MAAs) profile of a rice-field cyanobacterium Anabaena doliolum as influenced by PAR and UVR. Planta 229, 225–233.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Singh SP, Klisch M, Häder D-P, Sinha RP (2008c) Role of various growth media on shinorine (mycosporine-like amino acid) concentration and photosynthetic yield in Anabaena variabilis PCC 7937. World Journal of Microbiology & Biotechnology 24, 3111–3115.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Sinha RP, Häder D-P (2002) Life under solar UV radiation in aquatic organisms. Advances in Space Research 30, 1547–1556.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sinha RP, Häder D-P (2008) UV-protectants in cyanobacteria. Plant Science 174, 278–289.
CAS |
open url image1

Sinha RP, Kumar HD, Kumar A, Häder D-P (1995) Effects of UV-B irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in cyanobacteria. Acta Protozoologica 34, 187–192.
CAS |
open url image1

Sinha RP, Singh N, Kumar A, Kumar HD, Häder M, Häder D-P (1996) Effects of UV irradiation on certain physiological and biochemical processes in cyanobacteria. Journal of Photochemistry and Photobiology. B, Biology 32, 107–113.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Sinha RP, Singh N, Kumar A, Kumar HD, Häder D-P (1997) Impacts of ultraviolet-B irradiation on nitrogen-fixing cyanobacteria of rice paddy fields. Journal of Plant Physiology 150, 188–193.
CAS |
open url image1

Sinha RP, Klisch M, Gröniger A, Häder D-P (1998) Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. Journal of Photochemistry and Photobiology. B, Biology 47, 83–94.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Sinha RP, Klisch M, Häder D-P (1999) Induction of a mycosporine-like amino acid (MAA) in the rice-field cyanobacterium Anabaena sp. by UV irradiation. Journal of Photochemistry and Photobiology. B, Biology 52, 59–64.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Sinha RP, Klisch M, Gröniger A, Häder D-P (2000) Mycosporine-like amino acids in the marine red alga Gracilaria cornea-effects of UV and heat. Environmental and Experimental Botany 43, 33–43.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Sinha RP, Klisch M, Helbling EW, Häder D-P (2001) Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiation. Journal of Photochemistry and Photobiology. B, Biology 60, 129–135.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sinha RP, Ambasht NK, Sinha JP, Klisch M, Häder D-P (2003) UVB-induced synthesis of mycosporine-like amino acids in three strains of Nodularia (cyanobacteria). Journal of Photochemistry and Photobiology. B, Biology 71, 51–58.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sinha RP, Kumar A, Tyagi MB, Häder D-P (2005) Ultraviolet-B-induced destruction of phycobiliproteins in cyanobacteria. Physiology and Molecular Biology of Plants 11, 313–319.
CAS |
open url image1

Sinha RP, Keshri G, Kumari S, Singh SP, Rastogi RP, Singh KL (2006) Screening of mycosporine like amino acids (MAAs) in cyanobacteria. Modern Journal of Life Sciences 5, 1–6. open url image1

Sinha RP, Singh SP, Häder D-P (2007) Database on mycosporines and mycosporine like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. Journal of Photochemistry and Photobiology. B, Biology 89, 29–35.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sinha RP, Rastogi RP, Ambasht NK, Häder D-P (2008a) Life of wetland cyanobacteria under enhancing solar UV-B radiation. Proceedings of the National Academy of Sciences, India. Sec. B: Biological Sciences 78, 53–65. open url image1

Sinha RP, Kumari S, Rastogi RP (2008b) Impacts of ultraviolet-B radiation on cyanobacteria: photoprotection and repair. Journal of Scientific Research 52, 125–142. open url image1

Soule T, Stout V, Swingley WD, Meeks JC, Garcia-Pichel F (2007) Molecular genetics and genomic analysis of scytonemin biosynthesis in Nostoc punctiforme ATCC 29133. Journal of Bacteriology 189, 4465–4472.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annual Review of Microbiology 31, 225–274.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Stewart WDP (1980) Some aspects of structure and function in N2-fixing cyanobacteria. Annual Review of Microbiology 34, 497–536.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Suh H-J, Lee H-W, Jung J (2003) Mycosporine glycine protects biological systems against photodynamic damage by quenching singlet oxygen with a high efficiency. Photochemistry and Photobiology 78, 109–113.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Vaishampayan A, Sinha RP, Häder D-P, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Botanical Review 67, 453–516.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang G, Chen K, Chen L, Hu C, Zhang D, Liu Y (2008) The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp. against UV-B radiation and the effects of exogenous antioxidants. Ecotoxicology and Environmental Safety 69, 150–157.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1