Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Polyploidy and possible implications for the evolutionary history of some Australian Danthonieae

C. Waters A F , B. G. Murray B , G. Melville A , D. Coates C , A. Young D and J. Virgona E
+ Author Affiliations
- Author Affiliations

A New South Wales Department of Primary Industries, PMB 19, Trangie, NSW 2823, Australia.

B School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.

C Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.

D CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.

E Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia.

F Corresponding author. Email: cathy.waters@industry.nsw.gov.au

Australian Journal of Botany 58(1) 23-34 https://doi.org/10.1071/BT09138
Submitted: 19 August 2009  Accepted: 8 December 2009   Published: 11 March 2010

Abstract

Polyploidy is a widespread feature of some plants that allows for rapid speciation and occurs widely in Poaceae. However, there have been few studies of Australian native grasses reporting the distribution patterns of cytotypes and examining the potential role of different cytotypes in adaptation. We determined chromosome number for 48, 113, 8, 43 and 33 plants of Austrodanthonia bipartita (Link) H.P.Linder, A. caespitosa (Gaudich.) H.P.Linder, A. eriantha (Lindl.) H.P.Linder, A. fulva (Vickery) H.P.Linder and A. setacea (R.Br.) H.P.Linder, respectively, representing 28 wild populations collected in central western New South Wales. A widespread distribution is reported for tetraploids (2n = 48), whereas diploids (2n = 24) and a limited number of hexaploids (2n = 72) appear to be associated with northern and western populations. In all populations, coexistent cytotypes were found, although tetraploids were the most widespread cytotype for the most commonly occurring species, A. caespitosa. The occurrence of low frequencies of putative intermediate cytotypes, particularly triploids, in all five species provides evidence for inter-specific hybridisation and/or intra-specific crossing between cytotypes. The lack of common ecological factors (climate, edaphic or micro-site) that clearly distinguish diploid from tetraploid A. caespitosa plants provides further evidence for hybridisation between cytological races of this species.


Acknowledgements

Technical support for plant collection was provided by NSW Department of Primary Industries support staff Warren Smith, Ian Toole, Sarah-Jayne Jenkins and Rob Pither. Particularly, we thank Dr Nigel Urwin for his help and the use of the flow cytometer at Charles Sturt University. Sue Mortimer provided helpful feedback on a draft of this manuscript. Funding for this research was provided by CRC for Plant-Based Management of Dryland Salinity and a Charles Sturt University Postgraduate Research Scholarship.


References


Abele K (1959) Cytological studies in the genus Danthonia. Transactions of the Royal Society of South Australia 82, 163–173. open url image1

Archer KA, Robinson GG (1988) Agronomic potential of native grasss species on the Northern Tablelands of New South Wales. II. Nutritive value. Australian Journal of Agricultural Research 39, 425–436.
Crossref | GoogleScholarGoogle Scholar | open url image1

AUSLIG (1990) ‘Vegetation. Atlas of Australian Resources’. Vol 6. (Australian Surveying and Land Information Group: Canberra, Australia)

Borrill M, Lindner R (1971) Diploid–tetraploid sympatry in Dactylis (Graminae). New Phytologist 70, 1111–1124.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brock RD, Brown JAM (1961) Cytotaxonomy of Australian Danthonia. Australian Journal of Botany 9, 62–91.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cashmore AB (1932) An investigation of the taxonomic and agricultural characters of the Danthonia group. Council Scientific Industrial Research Bulletin No 69.

Dolezel J, Lucretti S, Schubert I (1994) Plant chromosome analysis and sorting by flow cytometry. Critical Reviews in Plant Sciences 13, 275.
Crossref | GoogleScholarGoogle Scholar | open url image1

Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometry analysis of the cell cycle in intact plant tissue. Science 220, 1049–1051.
Crossref | GoogleScholarGoogle Scholar | open url image1

Garden D, Waters CM, Smith AB, Norton MR, Auricht GC, Kobelt E (2005) Performance of native and introduced grasses for low-input pastures. 2. Herbage production. The Rangeland Journal 27, 41–53.
Crossref | GoogleScholarGoogle Scholar | open url image1

Grant V (1981) ‘Plant speciation.’ 2nd edn. (Columbia University Press: New York)

Groves RH , Whalley RDB (2002) Grass and grassland ecology in Australia. In ‘Flora of Australia. Vol. 43. Poaceae 1’. (Eds K Mallet, AE Orchard) pp. 157–182. (ABRS/CSIRO: Melbourne)

Hayman DL (1960) The distribution and cytology of the chromosome races of Themeda australis in Southern Australia. Australian Journal of Botany 8, 58–68.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hilu KW (2004) Phylogenetics and chromosomal evolution in the Poaceae (grasses). Australian Journal of Botany 52, 13–23.
Crossref | GoogleScholarGoogle Scholar | open url image1

Husband BC (2004) The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biological Journal of the Linnean Society. Linnean Society of London 82, 537–546.
Crossref | GoogleScholarGoogle Scholar | open url image1

Husband BC, Schemske DW (1998) Cytotype distribution at a diploid–tetraploid contact zone in Chamerion (Epilobium) Angustifolium (Onagraceae). American Journal of Botany 85, 1688–1694.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jackson RC (1973) Chromosomal evolution in Haplopappus gracilis: a centric transposition race. Evolution 27, 243–256.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jay M, Reynaud J, Blaise S, Cartier D (1991) Evolution and differentiation of Lotus corniculatus/Lotus alpinus populations from French south-western alps. III. Conclusions. Evolutionary Trends in Plants 52, 157–160. open url image1

Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends in Plant Science 2, 470–476.
Crossref | GoogleScholarGoogle Scholar | open url image1

Levin DA (1983) Polyploidy and novelty in flowering plants. American Naturalist 122, 1–24.
Crossref | GoogleScholarGoogle Scholar | open url image1

Linder PH (1997) Nomenclatural correlations in the Rytidosperma complex (Danthonieae, Poaceae). Telopea 7, 269–274. open url image1

Lodge GM (1981) Establishment of warm and cool season native perennial grasses on the north-west slopes of New South Wales. II. Establishment and seedling survival in the field. Australian Journal of Botany 29, 121–133.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lodge GM (1993) The domestication of the native grasses Danthonia richardsonii Cashmore and Danthonia linkii Kunth for agricultural use. I. Selecting for inflorescence seed yield. Australian Journal of Agricultural Research 44, 59–77.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lodge GM , Whalley RDB (1989) Native and natural pastures on the northern slopes and tablelands of New South Wales: a review and annotated bibliography. Technical Bulletin 35. NSW Agriculture and Fisheries, Sydney.

Lumaret R, Barrientos E (1990) Phylogenetic relationships and gene flow between sympatric diploid and tetraploid plants of Dactylis glomerata (Gramineae). Plant Systematics and Evolution 169, 81–96.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lumaret RG, Guillerm JL, Delay J, Ait Lhaj Loufti A, Izco J, Jay M (1987) Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain). Oecologica 73, 436–446.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mallet K , Orchard AE (2002) Maps in ‘Flora of Australia. Vol. 43. Poaceae 1.’ pp. 310–311. (ABRS/CSIRO: Melbourne)

Mandáková T, Münzbergova Z (2006) Distribution and ecology of cytotypes of the Aster amelus aggregates in the Czech republic. Annals of Botany 98, 845–856.
Crossref | GoogleScholarGoogle Scholar | open url image1

Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264, 421–424.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mitchell WW (1992) Cytological races of Arctagrostis latifolia (Poaceae) in Alaska. Canadian Journal of Botany 70, 80–83.
Crossref | GoogleScholarGoogle Scholar | open url image1

O’Dwyer C, Attiwill P (2000) Restoration of a native grassland as habitat for the golden sun moth Synemon plana Walker (Lepidoptera: Casniidae) at Mount Piper, Australia. Restoration Ecology 8, 170–174.
Crossref | GoogleScholarGoogle Scholar | open url image1

Oram R, Lodge G (2003) Trends in temperate Australian grass breeding and selection. Australian Journal of Agricultural Research 54, 211–241.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29, 467–501.
Crossref | GoogleScholarGoogle Scholar | open url image1

Scott AW, Whalley RDB (1982) The distribution and abundance of species of Danthonia DC on the New England Tablelands (Australia). Australian Journal of Ecology 7, 239–248.
Crossref | GoogleScholarGoogle Scholar | open url image1

SER (2002) The SER primer on ecological restoration – a publication of the Science and Policy Working Group. Society for Ecological Restoration Science and Policy Working Group. Available at www.ser.org. [Accessed 3 April 2009] (Society for Ecological Restoration International: Tucson, AZ)

Sieber VK, Murray BG (1980) Spontaneous polyploids in marginal populations of Alopecurus bulbosus Gouan (Poaceae). Botanical Journal of the Linnean Society 81, 293–300.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smarda P, Bures P (2006) Intraspecific DNA content variability in Festuca pallens on different geographic scales and ploidy levels. Annals of Botany 98, 665–678.
Crossref | GoogleScholarGoogle Scholar | open url image1

Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Critical Reviews in Plant Sciences 12, 243.
Crossref | GoogleScholarGoogle Scholar | open url image1

Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenic, genomic and genetic comparisons. Biological Journal of the Linnean Society. Linnean Society of London 82, 485–501.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stebbins GL (1971) The Morphological, physiological and cytogenetic significance of polyploidy. In ‘Chromosomal evolution in higher plants’. Contemporary biology. (Eds EJW Barrington, A Willis) pp. 124–154. (Edward Arnold Ltd: London)

Tyler B, Borrill M, Chorlton K (1978) Studies in Festuca X. Observations on germination and seedling cold tolerance in diploid Festuca pratensis and tetraploid F. pratensis var. aennina in relation to their altitudinal distribution. Journal of Applied Ecology 15, 219–226.
Crossref | GoogleScholarGoogle Scholar | open url image1

Van Dijk P, Hartog M, Van Delden W (1992) Single cytotype area in autopolyploid Plantago media L. Biological Journal of the Linnean Society. Linnean Society of London 46, 315–331.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vergeer P, Rengelink R, Copal A, Ouborg J (2003) The interacting effects of genetic variation, habitat quality and population size on performance of Succisa pratensis. Journal of Ecology 91, 18–26.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vickery JW (1956) A revision of the Australian species of Danthonia DC. Contributions from the NSW National Herbarium 2, 249–325. open url image1

Waters CM (2007) A genecological study of the Australian native grass Austrodanthonia caespitosa (Gaudich.) H.P.Linder. PhD Thesis. Charles Sturt University. Wagga Wagga, Australia

Waters CM, Garden DL, Smith AB, Friend DA, Stanford P, Auricht GC (2005) Performance of native and introduced grasses for low-input pasture. 1. Survival and recruitment. The Rangeland Journal 27, 23–39.
Crossref | GoogleScholarGoogle Scholar | open url image1

Waters CM, Dear B, Hackney B, Jessop P, Melville G (2008) Trangie Wallaby grass Austrodanthonia caespitosa (Gaudich.) H.P.Linder. Australian Journal of Experimental Agriculture 48, 575–577.
Crossref | GoogleScholarGoogle Scholar | open url image1

Waters CM, Melville G, Jacobs S (2009) Association of five Austrodanthonia species (family Poaceae) with large and small scale environmental features in central western New South Wales. Cunninghamia 11, 65–80. open url image1

Wendel J , Doyle J (2005) Polyploidy and evolution in plants. In ‘Plant diversity and evolution – genotypic and phenotypic variation in higher plants’. (Ed. RJ Henry) pp. 97–118. (CABI Publishing: Oxfordshire, UK)

Whalley RDB, Brown RW (1973) A method for the collection and transport of native grasses from the field to the glasshouse. Journal of Range Management 26, 376–377.
Crossref | GoogleScholarGoogle Scholar | open url image1

Williams OB (1961) Studies in the ecology of the riverine plain. III. Phenology of a Danthonia caespitosa Gaudich. grassland. Australian Journal of Agricultural Research 12, 247–259.
Crossref | GoogleScholarGoogle Scholar | open url image1

Young AG, Murray BG (2000) Genetic bottlenecks and dysgenic gene flow into re-established populations of the grassland daisy, Rutidosis leptorrhynchoides. Australian Journal of Botany 48, 409–416.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yu P , Prakash N , Whalley R (2000) Comparative reproductive biology of the vulnerable and common grasses in Bothriochloa and Dichanthium. In ‘Grasses, systematics and evolution’. (Eds S Jacobs, J Everett) pp. 307–315. (CSIRO Publishing: Melbourne)

Yu P, Prakash N, Whalley R (2003) Sexual and apomictic seed development in the vulnerable grass Bochriochloa biloba. Australian Journal of Botany 51, 75–84.
Crossref | GoogleScholarGoogle Scholar | open url image1