Phytolith analysis of Cyperaceae from the Pampean region, Argentina
Mariana Fernández Honaine A C D , Alejandro F. Zucol B C and Margarita L. Osterrieth AA Instituto de Geología de Costas y del Cuaternario, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 722, Correo Central, (7600) Mar del Plata, Buenos Aires, Argentina.
B Laboratorio de Paleobotánica, Centro de Investigaciones Científicas (CICYTTP–CONICET), Dr Materi y España (E3105BWA) Diamante, Entre Ríos, Argentina.
C Comisión Nacional de Investigaciones Científicas y Tecnológicas (CONICET).
D Corresponding author. Email: fhonaine@mdp.edu.ar
Australian Journal of Botany 57(6) 512-523 https://doi.org/10.1071/BT09041
Submitted: 21 February 2009 Accepted: 20 August 2009 Published: 9 November 2009
Abstract
Cyperaceae, along with Poaceae, is the main silica accumulator. Although the anatomical-taxonomic and palaeobotanical relevance of phytoliths has been well established, there are no studies that deal with the qualitative and quantitative aspects of the phytolith production or differentiate phytoliths from the different organs in Cyperaceae. Toward the construction of a detailed database of phytolith production, we describe in the present paper the phytoliths of leaves, culms and fruits of Cyperaceae from Pampean region (Argentina). Phytoliths were extracted by a calcination technique. Qualitative and quantitative characters and percentages of phytolith morphotypes were subject to principal component analysis to analyse their taxonomic relevance. For some sedges, values of phytolith content and a comparative analysis of leaves, culms and fruit phytoliths are presented here for the first time. Diverse tissues such as epidermis, xylem, parenchyma and sclerenchyma produced phytoliths. The most abundant morphotypes were conical phytoliths, which showed differences in the base shape and in their size between organs. Leaf/culm cones have a rounded, rectangular or square base; typical fruit cones have a polygonal base and they are bigger and more robust. PCA showed that quantitative and qualitative characters of cones, along with the percentages of morphotypes, allowed group distinction.
Acknowledgements
This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (PICT 1700, PICT 07 13864), Universidad Nacional de Mar del Plata (EXA 292/04) and CONICET (postgraduate fellowship to M. F. H.). We greatly thank Professor Rosa E. Guaglianone for the help in the identification and selection of the species, for the extensive bibliography and for the comments and suggestions on the first version of the manuscript, and Dr A. M. Avalos for the corrections and suggestions to the text.
Alexandre A,
Meunier J,
Lezine A,
Vincens A, Schwartz D
(1997) Phytoliths: indicators of grasslands dynamics during the late Holocene in intertropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 213–229.
| Crossref | GoogleScholarGoogle Scholar |
Barboni D,
Bonnefille R,
Alexandre A, Meunier JD
(1999) Phytoliths as paleoenvironmental indicators, West Side Middle Awash Valley, Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 87–100.
| Crossref | GoogleScholarGoogle Scholar |
Blinnikov MS
(2005) Phytoliths in plants and soils of the interior Pacific Northwest, USA. Review of Palaeobotany and Palynology 135, 71–98.
| Crossref | GoogleScholarGoogle Scholar |
Bonomo M,
Zucol AF,
Gutierrez Tellez B,
Coradeghini A, Vigna MS
(2009) Late Holocene palaeoenvironments of the Nutria Mansa 1 archaeological site, Argentina. Journal of Paleolimnology 41, 273–296.
| Crossref | GoogleScholarGoogle Scholar |
Borba-Roschel M,
Alexandre A,
Varajão AFDC,
Meunier JD,
Varajão CAC, Colin F
(2006) Phytoliths as indicators of pedogenesis and paleoenvironmental changes in the Brazilian cerrado. Journal of Geochemical Exploration 88, 172–176.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Borrelli N,
Osterrieth M, Marcovecchio J
(2008) Interrelations of vegetal cover, silicophytoliths content and pedogenesis of Typical Argiudolls of the Pampean Plain, Argentina. Catena 75, 146–153.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Browning J, Gordon-Gray KD
(1995) Studies in Cyperaceae in southern Africa 26: glume epidermal silica deposits as a character in generic delimitation of Costularia and Cyathocoma as distinct from Tetraria and other allies. South African Journal of Botany 61, 66–71.
Bruhl JJ
(1995) Sedge Genera of the world: relationships and a new classification of the Cyperaceae. Australian Systematic Botany 8, 125–305.
| Crossref | GoogleScholarGoogle Scholar |
Bruhl JJ,
Watson L, Dallwitz MJ
(1992) Genera of Cyperaceae: interactive identification and information retrieval. Taxon 41, 225–234.
| Crossref | GoogleScholarGoogle Scholar |
Conley DJ
(2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles 16, 1121–1129.
| Crossref | GoogleScholarGoogle Scholar |
Duval-Jouve MJ
(1873) Sur une forme de cellules épidermiques qui paraissent propres aux Cypéracées. Bulletin Société Botanique de France 20, 91–95.
Fernández Honaine M,
Zucol A, Osterrieth M
(2006) Phytolith assemblage and systematic association in grassland species of the SE Pampean Plains, Argentina. Annals of Botany 98, 1155–1165.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Gallego L,
Distel RA,
Camina R, Rodriguez Iglesias RM
(2004) Soil phytoliths as evidence for species replacement in grazed rangelands of Central Argentina. Ecography 27, 725–732.
| Crossref | GoogleScholarGoogle Scholar |
Gordon-Gray KD,
van Laren L, Bandu V
(1978) Silica deposits in Rhynchospora species (Cyperaceae). Proceedings Electron Microscopy Society of Southern Africa 8, 83–84.
Iriarte J, Paz EA
(2009) Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quaternary International 193, 99–123.
| Crossref | GoogleScholarGoogle Scholar |
Iriarte J
(2006) Vegetation and climate change since 14,810 14C yr B.P. in southeastern Uruguay and implications for the rise of early Formative societies. Quaternary Research 65, 20–32.
| Crossref | GoogleScholarGoogle Scholar |
Labouriau LG
(1983) Phytolith work in Brazil: a minireview. Phytolitharien Newsletter 2, 6–10.
Lanning FC, Eleuterius LN
(1989) Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. Annals of Botany 63, 395–410.
Madella M,
Alexandre A, Ball T
(2005) International Code for Phytolith Nomenclature 1_0. Annals of Botany 96, 253–260.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Mehra PN, Sharma OP
(1965) Epidermal silica cells in the Cyperaceae. Botanical Gazette (Chicago, Ill.) 126, 53–58.
| Crossref | GoogleScholarGoogle Scholar |
Menapace FJ, Wujek DE
(1987) The systematic significance of achene micromorphology in Carex retrorsa (Cyperaceae). Brittonia 39, 278–283.
| Crossref | GoogleScholarGoogle Scholar |
Ragonese AM,
Guaglianone ER, Dizeo de Strittmatter C
(1984) Desarrollo del pericarpio con cuerpos de sílice de dos especies de Rhynchospora Vahl. (Cyperaceae). Darwiniana 25, 27–41.
Rovner I
(1971) Potential of opal phytolith for use in paleoecological reconstruction. Quaternary Research 1, 343–359.
| Crossref | GoogleScholarGoogle Scholar |
Schuyler AE
(1971) Scanning electron microscopy of achene epidermis in species of Scirpus (Cyperaceae) and related genera. Proceedings of the Academy of Natural Sciences of Philadelphia 123, 29–52.
Toivonen H, Timonen T
(1976) Perigynium and achene epidermis in some species of Carex, subg. Vignea (Cyperaceae), studied by scanning electron microscopy. Annales Botanici Fennici 13, 49–59.
Wilczek E
(1892) Beiträge zur Kenntniss des Baues der Frucht und des Samens der Cyperaceen. Botanisches Centralblatt 51, 129–138, 193–201.