Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Community structure of a rhodolith bed from cold-temperate waters (southern Australia)

A. S. Harvey A C and F. L. Bird B
+ Author Affiliations
- Author Affiliations

A Department of Botany, La Trobe University, Bundoora, Vic. 3086, Australia.

B Department of Zoology, La Trobe University, Bundoora, Vic. 3086, Australia.

C Corresponding author. Email: A.Harvey@latrobe.edu.au.

Australian Journal of Botany 56(5) 437-450 https://doi.org/10.1071/BT07186
Submitted: 12 October 2007  Accepted: 4 April 2008   Published: 24 July 2008

Abstract

Rhodolith beds are aggregations of free-living non-geniculate coralline red algae (Corallinales, Rhodophyta), with a high biodiversity of associated organisms. This is the first detailed study of a rhodolith-bed community from the cold-temperate waters of southern Australia. This bed, located at 1–4-m depth in Western Port, Victoria, is composed of four rhodolith-forming species (Hydrolithon rupestre (Foslie) Penrose, Lithothamnion superpositum Foslie, Mesophyllum engelhartii (Foslie) Adey and Neogoniolithon brassica-florida (Harvey) Setchell & Mason). M. engelhartii has a foliose growth form and the other three species have fruticose growth forms. Detailed descriptions are provided for all species, allowing reliable identification. Comparisons with other rhodolith beds and reported rhodolith-forming species, both in Australia and worldwide, are also provided. The invertebrate cryptofaunal community was quantified for two rhodolith-forming species. The density of cryptofauna inhabiting foliose and fruticose rhodolith growth forms did not differ significantly and neither did abundance of individual phyla. Mean density of fauna was 0.4 invertebrates cm–3, the majority of which were polychaete worms. Comparisons of fauna associated with other rhodolith beds are also provided. A study of the vitality of the rhodolith bed showed dead rhodoliths are more abundant than live rhodoliths. Possible reasons for reduced bed vitality are explored.


Acknowledgements

This study would not have been possible without the help, enthusiasm and diving assistance of Robert Harvey, Antoinette Mascini and Andy Juzwin. Thanks go to Robert Burns and Gary Poore for assistance with invertebrate identifications. We also gratefully acknowledge the technical assistance of Lucinda Gibson. Sincere thanks go to Dr Daniela Basso and one anonymous reviewer for helpful comments.


References


Adey WH, Chamberlain YM, Irvine LM (2005) An SEM-based analysis of the morphology, anatomy, and reproduction of Lithothamnion tophiforme (Esper) Unger (Corallinales, Rhodophyta), with a comparative study of associated North Atlantic Arctic/Subarctic Melobesioideae. Journal of Phycology 41, 1010–1024.
Crossref | GoogleScholarGoogle Scholar | open url image1

Amado-Filho GM, Maneveldt GW, Manso RCC, Marins-Rosa BV, Pacheco MR, Guimaraes SMPB (2007) Structure of rhodolith beds from 4 to 55 metres deep along the southern coast of Espirito Santo State, Brazil. Ciencias Marinas 33, 399–410. open url image1

Basso D (1995) Study of living calcareous algae by a Palaeontological approach: non-geniculate Corallinaceae (Rhodophyta) of the soft bottoms of the Tyrrhenian sea (Western Mediterranean). The genera Phymatolithon Foslie and Mesophyllum Lemoine. Revista Italiana di Paleontologia e Stratigrafia 100, 575–596. open url image1

Basso D, Brusoni F (2004) The molluscan assemblage of a transitional environment: the Mediterranean maerl from off the Elba Island (Tuscan Archipelago, Tyrrhenian Sea). Bollettino Malacologico 40, 37–45. open url image1

Beesley PL , Ross GJB , Glasby CJ (2000) ‘Polychaetes and allies. The southern synthesis.’ (CSIRO Publishing: Melbourne)

Birkett DA , Maggs CA , Dring MJ (1998) ‘MAERL: (Volume V): an overview of dynamics and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science.’ (UK Marine SACs Project). 116 pp.

Blake C, Maggs C, Reimer P (2007) Use of radiocarbon dating to interpret past environments of maerl beds. Ciencias Marinas 33, 385–397. open url image1

Bressan G, Babbini L (2003) Corallinales del Mar Mediterraneo: guida alla determinazione. Biologia Marina Mediterranea 10, 337. open url image1

Cabioch J, Mendoza ML (1998) Mesophyllum alternans (Foslie) comb. nov. (Corallinales, Rhodophyta), a mediterraneo-Atlantic species, and new considerations on the Lithothamnion philippii Foslie complex. Phycologia 37, 208–221. open url image1

Chamberlain YM, Keats DW (1995) The melobesioid alga Mesophyllum engelhartii (Rhodophyta, Corallinaceae) in South Africa. South African Journal of Botany 61, 134–146. open url image1

Council of the European Communities (1992) Council Directive 92/43/EEC. Conservation of natural habitats and of wild flora and fauna. International Journal of the European Communities L206, 7–49. open url image1

De Grave S (1999) The influence of sedimentary heterogeneity on within maerl bed differences in infaunal crustacean community. Estuarine, Coastal and Shelf Science 49, 153–163.
Crossref | GoogleScholarGoogle Scholar | open url image1

De Grave S , Fazakerley H , Kelly L , Guiry MD , Ryan M , Walshe J (2000) A study of selected maerl beds in Irish waters and their potential for sustainable extraction. Marine Institute Report IR.95.MR.019 of the Marine Research Measure, Ireland.

Department of Conservation (1998) Kapiti Marine Reserve: conservation management plan. Wellington Conservancy Conservation Management Planning Series. No. 4. 61 pp.

Figueiredo M de O, Kain JM, Norton TA (2000) Responses of crustose corallines to epiphytic and canopy cover. Journal of Phycology 36, 17–24.
Crossref |
open url image1

Figueiredo M de O, Santos de Menezes K, Costa-Paiva EM, Paiva PC, Ventura CRR (2007) Experimental evaluation of rhodoliths as living substrata for infauna at the Abrolhos Bank, Brazil. Ciencias Marinas 33, 427–440. open url image1

Foster MS (2001) Rhodoliths: between rocks and soft places. Journal of Phycology 37, 659–667.
Crossref | GoogleScholarGoogle Scholar | open url image1

Foster MS, McConnico LM, Lundsten L, Wadsworth T, Kimball T, Brooks LB, Medina-Lopez M, Riosmena-Rodriguez R, Hernandez-Carmona G, Vasquez-Elizondo RM, Johnson S, Steller DL (2007) Diversity and natural history of a Lithothamnion muelleriSargassum horridum community in the Gulf of California. Ciencias Marinas 33, 367–384. open url image1

Frantz BR, Kashgarian M, Coale KH, Foster MS (2000) Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry. Limnology and Oceanography 45, 1773–1777. open url image1

Goldberg N (2006) Age estimates and description of rhodoliths from Esperance Bay, Western Australia. Journal of the Marine Biological Association of the United Kingdom 86, 1291–1296.
Crossref | GoogleScholarGoogle Scholar | open url image1

Goldberg NA , Kendrick GA (2005) A catalogue of the marine plants found in the western islands of the Recherche Archipelago (Western Australia), with notes on their distribution in relation to island location, depth, and exposure to wave energy. In ‘The marine flora and fauna of Esperance, Western Australia’. (Eds FE Well, GA Kendrick, DI Walker) pp. 25–89. (Western Australian Museum: Perth)

Grall J, Hall-Spencer JM (2003) Problems facing maerl conservation in Brittany. Aquatic Conservation: Marine & Freshwater Ecosystems 13, S55–S64.
Crossref | GoogleScholarGoogle Scholar | open url image1

Grove S (2004) Characterising the fish habitats of the Recherche Archipelago, Fisheries Research Development Corporation Project 2001/060, 582 pp. Prepared for Fisheries Research and Development Corporation.

Halfar J, Zack T, Kronz A, Zachos JC (2000) Growth and high-resolution paleoenvironmental signals of rhodoliths (coralline red algae): a new biogenic archive. Journal of Geophysical Research 105, 22107–22116.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hall-Spencer JM, Moore PG (2000) Scallop dredging has profound, long-term impacts on maerl habitats. ICES Journal of Marine Science 57, 1407–1415.
Crossref | GoogleScholarGoogle Scholar | open url image1

Harvey A, Woelkerling W (2007) A guide to nongeniculate coralline red algal (Corallinales, Rhodophyta) rhodolith identification. Ciencias Marinas 33, 411–426. open url image1

Harvey AS, Woelkerling WJ, Millar AJK (2003a) An account of the Hapalidiaceae (Corallinales, Rhodophyta) in south-eastern Australia. Australian Systematic Botany 16, 647–698.
Crossref | GoogleScholarGoogle Scholar | open url image1

Harvey A, Broadwater S, Woelkerling WJ, Mitrovski PJ (2003b) Choreonema (Corallinales, Rhodophyta): 18S rRNA phylogeny and resurrection of the Hapalidiaceae for the subfamilies Choreonematoideae, Austrolithoideae and Melobesioideae. Journal of Phycology 39, 988–998. open url image1

Harvey A , Woelkerling W , Farr T , Neill K , Nelson W (2005) Coralline algae of central New Zealand: an identification guide to common ‘crustose’ species. National Institute of Water & Atmospheric Research Information Series No. 57. (National Institute of Water & Atmospheric Research: Wellington, New Zealand)

Harvey A, Phillips LE, Woelkerling W, Millar AJK (2006) The Corallinaceae, subfamily Mastophoroideae (Corallinales, Rhodophyta) in south-eastern Australia. Australian Systematic Botany 19, 387–429.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hauck F (1878) Beiträge sur Kenntnis der Adriatischen Algen. X. Österreichische Botanische Zeitschrift 28, 288–295.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hinojosa-Arango G, Riosmena-Rodríguez R (2004) Influence of rhodolith-forming species and growth-form on associated fauna of rhodolith beds in the Central-West Gulf of California, Mexico. Marine Ecology 25, 109–127.
Crossref | GoogleScholarGoogle Scholar | open url image1

Holmgren P , Holmgren NH , Bartlett LC (1990) ‘Index Herbariorum, part 1. The herbaria of the world.’ (Koeltz Scientific Books [Note: Regnum Vegetabile Vol. 120]: Königstein, Germany)

Huisman JM , Abbott IA , Smith CM (2007) ‘Hawaiian reef plants.’ (University of Hawaii Sea Grant College Program: Honolulu, Hawaii)

Irving AD, Connell SD, Elsdon TS (2004) Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. Journal of Experimental Marine Biology and Ecology 310, 1–12.
Crossref | GoogleScholarGoogle Scholar | open url image1

James NP, Collins LB, Bone Y, Hallcock P (1999) Subtropical carbonates in a temperate realm: modern sediments on the southwest Australian shelf. Journal of Sedimentary Research 69, 1297–1321.
Crossref | GoogleScholarGoogle Scholar | open url image1

James NP, Bone Y, Collins LB, Kyser TK (2001) Surficial sediments of the Great Australian Bight: Facies dynamics and oceanography on a vast cold-water carbonate shelf. Journal of Sedimentary Research 71, 549–567.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kamenos NA, Moore PG, Hall-Spencer JM (2003) Substratum heterogeneity of dredged vs un-dredged maerl grounds. Journal of the Marine Biological Association of the United Kingdom 83, 411–413.
Crossref | GoogleScholarGoogle Scholar | open url image1

Keats DW, Steneck RS, Townsend RA, Borowitzka MA (1996) Lithothamnion prolifer Foslie: a common non-geniculate coralline alga (Rhodophyta: Corallinaceae) from the tropical and subtropical Indo-Pacific. Botanica Marina 39, 187–200. open url image1

Keats DW, Maneveldt G, Chamberlain YM (2000) Lithothamnion superpositum Foslie: a common crustose red alga (Corallinaceae) in South Africa. Cryptogamie Algologie 21, 381–400.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kendrick GA, Brearley A (1997) Infuence of Sargassum spp. attached to rhodoliths on sampling effort and demographic analyses of Sargassum spp. (Sargassaceae, Phaeophyta) attached to a reef. Botanica Marina 40, 517–521. open url image1

Kleypas JA , Freely RA , Fabry VJ , Langdon C , Sabine CL , Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop held 18–20 April 2005. St Petersburg, FL. Sponsored by NSF, NOAA, and the US Geological Survey. p. 88.

Konar B, Riosmena-Rodríguez R, Iken K (2006) Rhodolith bed: a newly discovered habitat in the Northern Pacific Ocean. Botanica Marina 49, 355–359.
Crossref | GoogleScholarGoogle Scholar | open url image1

Littler MM (1973) The population and community structure of Hawaiian fringing-reef crustose corallinaceae (Rhodophyta, Cryptonemiales). Journal of Experimental Marine Biology and Ecology 11, 103–120.
Crossref | GoogleScholarGoogle Scholar | open url image1

Littler DS , Littler MM (2000) ‘Caribbean reef plants.’ (Offshore Graphics: Washington, DC)

Littler MM, Littler DS (1997) An illustrated marine flora of the Pelican Cays, Belize. Bulletin of the Biological Society of Washington 9, 1–149. open url image1

Lund M, Davies PJ, Braga JC (2000) Coralline algal nodules off Fraser Island, Eastern Australia. Facies 42, 25–34.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mannino AM, Castriota L, Beltrano AM, Sunseri G (2002) The epiflora of a rhodolith bed from the Island of Ustica (Southern Tyrrhenian Sea). Flora Mediterranea 12, 11–28. open url image1

Mathis BJ , Kohn AJ , Goldberg NA (2005) Rhodoliths: the inside story. In ‘The marine flora and fauna of Esperance, Western Australia’. (Eds FE Wells, DI Walker, GA Kendrick) pp. 147–157. (Western Australian Museum: Perth)

Mendoza ML, Molina S and  Ventura P ((1996)) The epiflora of a rhodolith bed from the Island of Ustica (Southern Tyrrhenian Sea). Flora Criptogámica de Tierra del Fuego Vol. 8, 1–71.

Oliveira EC , Österlund K , Mtolera MSP (2005) ‘Marine plants of Tanzania. A field guide to the seaweeds and seagrasses.’ (Botany Department, Stockholm University: Stockholm, Sweden)

Payri CE (1997) Hydrolithon reinboldii rhodolith distribution, growth and carbon production of a French Polynesian reef. Proceedings of the 8th International Coral Reef Symposium 1, 755–760. open url image1

Penrose DL (1996 a) Genus Hydrolithon. In ‘The marine benthic flora of southern Australia—Part IIIB. Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales’. (Ed. HBS Womersley) pp. 255– 266. (Australian Biological Resources Study: Canberra)

Penrose DL (1996 b) Genus Neogoniolithon. In ‘The marine benthic flora of southern Australia—Part IIIB. Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales’. (Ed. HBS Womersley) pp. 280–283. (Australian Biological Resources Study: Canberra)

Riosmena-Rodríguez R, Woelkerling W, Foster MS (1999) Taxonomic reassessment of rhodolith-forming species of Lithophyllum (Corallinales, Rhodophyta) in the Gulf of California, Mexico. Phycologia 38, 401–417. open url image1

Steller DL, Foster MS (1995) Environmental factors influencing distribution and morphology of rhodoliths on Bahia Concepcion, B.C.S., Mexico. Journal of Experimental Marine Biology and Ecology 194, 201–212.
Crossref | GoogleScholarGoogle Scholar | open url image1

Steller DL, Riosmena-Rodríguez R, Foster MS, Roberts CA (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquatic Conservation: Marine & Freshwater Ecosystems 13, S5–S20.
Crossref | GoogleScholarGoogle Scholar | open url image1

Steneck RS (1986) The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annual Review of Ecology and Systematics 17, 273–303.
Crossref | GoogleScholarGoogle Scholar | open url image1

Verheij E (1994) Nongeniculate Corallinaceae (Corallinales, Rhodophyta) from the Spermonde Archipelago, SW Sulawesi, Indonesia. Blumea 39, 95–137. open url image1

Wallbrink PJ , Hancock GJ (2003) Western Port sediment study: review of literature and assessment of knowledge gaps. CSIRO Land and Water technical report 12/03, Canberra.

Wallbrink PJ , Hancock GJ , Olley IM , Hughes A , Prosser IP , Hunt D , Rooney G , Coleman R , Stevenson J (2003) The Western Port sediment study. CSIRO Consultancy report, 2003, Canberra.

Wilson RS , Hutchings PA , Glasby CJ (2003) ‘Polychaetes. An interactive identification guide.’ (CSIRO Publishing: Melbourne)

Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (Maerl): implications for European marine conservation. Biological Conservation 120, 279–289.
Crossref | GoogleScholarGoogle Scholar | open url image1

Woelkerling WJ (1996 a) Subfamily Melobesioideae. In ‘The marine benthic flora of southern Australia—Part IIIB. Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales’. (Ed. HBS Womersley) pp. 164–210. (Australian Biological Resources Study: Canberra)

Woelkerling WJ (1996 b) Subfamily Lithophylloideae. In ‘The marine benthic flora of southern Australia—Part IIIB. Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales’. (Ed. HBS Womersley) pp. 214–237. (Australian Biological Resources Study: Canberra)

Woelkerling WJ (1996 c) Family Sporolithaceae. In ‘The marine benthic flora of southern Australia—Part IIIB. Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales’. (Ed. HBS Womersley) pp. 153–158. (Australian Biological Resources Study: Canberra)

Woelkerling WJ, Campbell SJ (1992) An account of southern Australian species of Lithophyllum (Corallinaceae, Rhodophyta). Bulletin of the British Museum of (Natural History) Botany Series 22, 1–107. open url image1

Woelkerling WJ, Irvine LM, Harvey AS (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Australian Systematic Botany 6, 277–293.
Crossref | GoogleScholarGoogle Scholar | open url image1

Womersley HBS (1990) Biogeography of Australasian marine macroalgae. In ‘Biology of marine plants’. (Eds MN Clayton, RJ King) pp. 367–381. (Longman Cheshire: Melbourne)

Womersley HBS (1996) ‘The marine benthic flora of southern Australia: Rhodophyta—Part IIIB. Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales.’ (Australian Biological Resources Study: Canberra)

Yabur-Pacheco R, Riosmena-Rodríguez R (2006) Rhodolith bed composition in the southwestern Gulf of California, Mexico. The Nagisa World Congress 1, 37–47. open url image1